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Introduction

A longstanding issue across both science and instruction has been to understand how various aspects

of an educational curriculum or training program influence learning acquisition and generalization.

One such aspect, which has received a great deal of research attention, is the variability of examples

experienced during training (Raviv et al., 2022). The influence of training variation has been

studied in numerous domains, including category learning (Cohen et al., 2001; Posner & Keele,

1968), visuomotor learning (Berniker et al., 2014; Schmidt, 1975), language learning (Perry et al.,

2010), and education (Braithwaite & Goldstone, 2015; Guo et al., 2014). The pattern of results is

complex, with numerous studies finding both beneficial (Braun et al., 2009; Catalano & Kleiner,

1984; Gorman & Goldstone, 2022; Roller et al., 2001), as well as null or negative effects (Brekelmans

et al., 2022; Hu & Nosofsky, 2024; Van Rossum, 1990). The present study seeks to contribute to

the large body of existing research by examining the influence of variability in visuomotor function

learning - a domain in which it has been relatively under-studied.

Function Learning and Extrapolation

The study of human function learning investigates how people learn relationships between con-

tinuous input and output values. Function learning is studied both in tasks where individuals

are exposed to a sequence of input/output pairs (DeLosh et al., 1997; McDaniel et al., 2013), or

situations where observers are presented with an incomplete scatterplot or line graph and make

predictions about regions of the plot that do not contain data (Ciccione & Dehaene, 2021; Courrieu,
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2012; Said & Fischer, 2021; Schulz et al., 2020). Studies of function learning often compare the dif-

ficulty of learning functions of different underlying forms (e.g. linear, bi-linear, power, sinusoidal),

and the extent to which participants can accurately respond to novel inputs that fall in-between

previously experienced inputs (interpolation testing), or that fall outside the range of previously

experienced inputs (extrapolation).

Carroll (1963) conducted the earliest work on function learning. Input stimuli and output responses

were both lines of varying length. The correct output response was related to the length of the

input line by a linear, quadratic, or random function. Participants in the linear and quadratic

performed above chance levels during extrapolation testing, with those in the linear condition

performing the best overall. Carroll argued that these results were best explained by a rule-based

model wherein learners form an abstract representation of the underlying function. Subsequent

work by Brehmer (1974), testing a wider array of functional forms, provided further evidence for

superior extrapolation in tasks with linear functions. Brehmer argued that individuals start out

assuming a linear function, but given sufficient error will progressively test alternative hypotheses

with polynomials of greater degree. Koh & Meyer (1991) employed a visuomotor function learning

task, wherein participants were trained on examples from an unknown function relating the length

of an input line to the duration of a response (time between keystrokes). In this domain, participants

performed best when the relation between line length and response duration was determined by a

power law, as opposed to linear function. Koh and Meyer developed the log-polynomial adaptive-

regression model to account for their results.

The first significant challenge to rule-based accounts of function learning was put forth by DeLosh

et al. (1997) . In their task, participants learned to associate stimulus magnitudes with response

magnitudes that were related via either linear, exponential, or quadratic function. Participants

approached ceiling performance by the end of training in each function condition, and were able to

accurately respond on interpolation testing trials. All three conditions demonstrated some capacity

for extrapolation, however participants in the linear condition tended to underestimate the true

function, while exponential and quadratic participants reliably overestimated the true function on

extrapolation trials. Extrapolation and interpolation performances are depicted in Figure 1.

The authors evaluated the rule-based models introduced in earlier research (with some modifications

enabling trial-by-trial learning). The polynomial hypothesis testing model (Brehmer, 1974; Carroll,

1963) tended to mimic the true function closely in extrapolation, and thus offered a poor account
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of the under and over-estimation biases shown in the human data. The log-polynomial adaptive re-

gression model (Koh & Meyer, 1991) was able to mimic some of the systematic deviations produced

by human subjects, but also predicted overestimation in cases where underestimation occurred.

The authors also introduced two new function-learning models. The Associative Learning Model

(ALM) and the extrapolation-association model (EXAM). ALM is a two layer connectionist model

adapted from the ALCOVE model in the category learning literature (Kruschke, 1992). ALM

belongs to the general class of radial-basis function neural networks, and can be considered a

similarity-based model in the sense that the nodes in the input layer of the network are activated as a

function of distance (see Figure 17). The EXAM model retains the same similarity-based activation

and associative learning mechanisms as ALM, while being augmented with a linear rule response

mechanism. When presented with novel stimuli, EXAM will retrieve the most similar input-output

examples encountered during training, and from those examples compute a local slope. ALM was

able to provide a good account of participants’ training and interpolation data in all three function

conditions, however it was unable to extrapolate. EXAM, by contrast, was able to reproduce both

the extrapolation underestimation, as well as the quadratic and exponential overestimation patterns

exhibited by the human participants. Subsequent research identified some limitations in EXAM’s

ability to account for cases where human participants learn and extrapolate a sinusoidal function

(Bott & Heit, 2004) or to scenarios where different functions apply to different regions of the input

space (Kalish et al., 2004), though EXAM has been shown to provide a good account of human

learning and extrapolation in tasks with bi-linear, V-shaped input spaces (McDaniel et al., 2009).
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Figure 1: The generalization patterns of human particpiants observed in DeLosh et al. (1997)
(reproduced from Figure 3 in their manuscript). Dots represent the average responses of human
participants, and solid lines represent the true functions. The dashed vertical lines indicate the
lower and upper bounds of the trained examples. Stimulii that fall within the dashed lines are
interpolations of the training examples, while those that fall outside the dashed lines are extrapo-
lations.

Variability and Function Learning

The influence of variability on function learning tasks has received relatively little attention. The

study by DeLosh et al. (1997) (described in detail above) did include a variability manipulation

(referred to as density in their paper), wherein participants were trained with either 8, 20, or 50

unique input-output pairs, with the total number of training trials held constant. They found a

minimal influence of variability on training performance, and no difference between groups in in-

terpolation or extrapolation, with all three variability conditions displaying accurate interpolation,

and linearly biased extrapolation that was well accounted for by the EXAM model.

In the domain of visuomotor learning, van Dam & Ernst (2015) employed a task which required

participants to learn a linear function between the spikiness of shape stimuli and the correct hori-

zontal position to make a rapid pointing response. The shapes ranged from very spiky to completely

circular at the extreme ends of the space. Participants trained with intermediate shapes having

lower variation (2 shapes) or higher variation (5 shapes) condition, with the 2 items of the lower

variation condition matching the items used on the extreme ends of the higher variation training

space. Learning was significantly slower in the higher variation group. However, the two conditions

did not differ when tested with novel shapes, with both groups producing extrapolation responses

of comparable magnitude to the most similar training item, rather than in accordance with the
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true linear function. The authors accounted for both learning and extrapolation performance with

a Bayesian learning model. Similar to ALM, the model assumes that generalization occurs as a

Gaussian function of the distance between stimuli. However, unlike ALM, the Bayesian learning

model utilizes more elaborate probabilistic stimulus representations, with a separate Kalman Filter

for each shape stimulus.

Overview Of Present Study

The present study investigates the influence of training variability on learning, generalization, and

extrapolation in a uni-dimensional visuomotor function learning task. To the best of our knowledge,

this research is the first to employ the classic constant vs. varied training manipulation, commonly

used in the literature studying the benefits of variability, in the context of a uni-dimensional function

learning task. Across three experiments, we compare constant and varied training conditions in

terms of learning performance, extrapolation accuracy, and the ability to reliably discriminate

between stimuli.

To account for the empirical results, we will apply a series of computational models, including the

Associative Learning Model (ALM) and the Extrapolation-Association Model (EXAM). Notably,

this study is the first to employ approximate Bayesian computation (ABC) to fit these models to

individual subject data, enabling us to thoroughly investigate the full range of posterior predictions

of each model, and to examine the ability of these influential models of function learning to account

for both the group level and individual level data.

Experiment 1

Methods

Participants A total of 156 participants were recruited from Indiana University Introductory Psy-

chology Courses. Participants were randomly assigned to one of two training conditions: varied

training or constant training.

Task. The “Hit The Wall” (HTW) visuomotor extrapolation task task was programmed in

JavaScript, making use of the phaser.io game library. The HTW task involved launching a

projectile such that it would strike the “wall” at the target speed indicated at the top of the screen
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(see Figure 2). The target velocities were given as a range, or band, of acceptable velocity values

(e.g., band 800-1000). During the training stage, participants received feedback indicating whether

they had hit the wall within the target velocity band, or how many units their throw was above

or below the target band. Participants were instructed that only the x velocity component of the

ball was relevant to the task. The y velocity, or the location at which the ball struck the wall, had

no influence on the task feedback.

Figure 2: The Hit the wall task. Participants launch the blue ball to hit the red wall at the target
velocity band indicated at the top of the screen. The ball must be released from within the orange
square - but the location of release, and the location at which the ball strikes the wall are both
irrelevant to the task feedback.

Procedure. All participants completed the task online. Participants were provided with a description

of the experiment and indicated informed consent. Figure 3 illustrates the general procedure.

Participants completed a total of 90 trials during the training stage. In the varied training condition,

participants encountered three velocity bands (800-1000, 1000-1200, and 1200-1400). Participants

in the constant training condition trained on only one velocity band (800-1000) - the closest band

to what would be the novel extrapolation bands in the testing stage.
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Following the training stage, participants proceeded immediately to the testing stage. Participants

were tested from all six velocity bands, in two separate stages. In the novel extrapolation testing

stage, participants completed “no-feedback” testing from three novel extrapolation bands (100-

300, 350-550, and 600-800), with each band consisting of 15 trials. Participants were also tested

from the three velocity bands that were trained by the varied condition (800-1000, 1000-1200, and

1200-1400). In the constant training condition, two of these bands were novel, while in the varied

training condition, all three bands were encountered during training. The order in which par-

ticipants completed the novel-extrapolation and testing-from-3-varied bands was counterbalanced

across participants. A final training stage presented participants with “feedback” testing for each

of the three extrapolation bands (100-300, 350-550, and 600-800).

Figure 3: Experiment 1 Design. Constant and Varied participants complete different training
conditions.

Analyses Strategy

All data processing and statistical analyses were performed in R version 4.32 (Team, 2020). To

assess differences between groups, we used Bayesian Mixed Effects Regression. Model fitting was

performed with the brms package in R (Bürkner, 2017), and descriptive stats and tables were

extracted with the BayestestR package (Makowski et al., 2019). Mixed effects regression enables us

to take advantage of partial pooling, simultaneously estimating parameters at the individual and

group level. Our use of Bayesian, rather than frequentist methods allows us to directly quantify

the uncertainty in our parameter estimates, as well as avoid convergence issues common to the

frequentist analogues of our mixed models.

Each model was set to run with 4 chains, 5000 iterations per chain, with the first 2500 discarded as

warmup chains. Rhat values were within an acceptable range, with values <=1.02 (see appendix
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for diagnostic plots). We used uninformative priors for the fixed effects of the model (condition and

velocity band), and weakly informative Student T distributions for the random effects. For each

model, we report 1) the mean values of the posterior distribution for the parameters of interest, 2)

the lower and upper credible intervals (CrI), and the probability of direction value (pd).

Table 1: Statistical Model Specifications. The specifications for the Bayesian regression models
used in the analyses of each of the 3 experiments. Comparisons of accuracy use absolute deviation
as the dependent variable, while comparisons of discrimination use the raw velocities produced by
participants as the dependent variable.

Group Comparison Code Data

End of Training

Accuracy

brm(Abs. Deviation ~ condit) Final Training Block

Test Accuracy brm(Abs. Deviation ~ condit * bandType +

(1|id) + (1|bandInt)

All Testing trials

Band Discrimination brm(vx ~ condit * band +(1 + bandInt|id) All Testing Trials

In each experiment we compare varied and constant conditions in terms of 1) accuracy in the final

training block; 2) testing accuracy as a function of band type (trained vs. extrapolation bands);

3) extent of discrimination between all six testing bands. We quantified accuracy as the absolute

deviation between the response velocity and the nearest boundary of the target band. Thus, when

the target band was velocity 600-800, throws of 400, 650, and 900 would result in deviation values of

200, 0, and 100, respectively. The degree of discrimination between bands was measured by fitting

a linear model predicting the response velocity as a function of the target velocity. Participants who

reliably discriminated between velocity bands tended to have slope values ~1, while participants

who made throws irrespective of the current target band would have slopes ~0.
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Results
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Figure 4: Experiment 1 - Training Stage. Deviations from target band across training blocks.
Lower values represent greater accuracy.

Table 2: Experiment 1 - End of training performance. Comparing final training block ac-
curacy in the band common to both groups. The Intercept represents the average of the baseline
condition (constant training), and the conditVaried coefficient reflects the difference between the
constant and varied groups. A larger positive estimates indicates a greater deviation (lower ac-
curacy) for the varied group. CrI values indicate 95% credible intervals. pd is the probability of
direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 106.34 95.46 117.25 1

conditVaried 79.64 57.92 101.63 1

Training. Figure 4 displays the average deviations across training blocks for the varied group, which

trained on three velocity bands, and the constant group, which trained on one velocity band. To

compare the training conditions at the end of training, we analyzed performance on the 800-1000

velocity band, which both groups trained on. The full model results are shown in Table 1. The
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varied group had a significantly greater deviation from the target band than the constant group in

the final training block, (𝛽 = 79.64, 95% CrI [57.92, 101.63]; pd = 100%).

Table 3: Experiment 1 testing accuracy. Main effects of condition and band type (training
vs. extrapolation bands), and the interaction between the two factors. The Intercept represents the
baseline condition (constant training & trained bands). Larger coefficients indicate larger deviations
from the baselines - and a positive interaction coefficient indicates disproporionate deviation for the
varied condition on the extrapolation bands. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 152.55 70.63 229.85 1.0

conditVaried 39.00 -21.10 100.81 0.9

bandTypeExtrapolation 71.51 33.24 109.60 1.0

conditVaried:bandTypeExtrapolation 66.46 32.76 99.36 1.0

Testing. To compare accuracy between groups in the testing stage, we fit a Bayesian mixed ef-

fects model predicting deviation from the target band as a function of training condition (varied

vs. constant) and band type (trained vs. extrapolation), with random intercepts for participants

and bands. The model results are shown in Table 3. The main effect of training condition was

not significant (𝛽 = 39, 95% CrI [-21.1, 100.81]; pd = 89.93%). The extrapolation testing items

had a significantly greater deviation than the training bands (𝛽 = 71.51, 95% CrI [33.24, 109.6];

pd = 99.99%). Most importantly, the interaction between training condition and band type was

significant (𝛽 = 66.46, 95% CrI [32.76, 99.36]; pd = 99.99%), As shown in Figure 5, the varied

group had disproportionately larger deviations compared to the constant group in the extrapolation

bands.
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Figure 5: Experiment 1 Testing Accuracy. A) Empirical Deviations from target band during testing
without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing band
type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent 95%
credible intervals.

Table 4: Experiment 1 Testing Discrimination. Bayesian Mixed Model Predicting velocity as
a function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the Band
term reflect a larger slope, or greater sensitivity/discrimination. The interaction between condit
and Band indicates the difference between constant and varied slopes. CrI values indicate 95%
credible intervals. pd is the probability of direction (the % of the posterior on the same side of 0
as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 408.55 327.00 490.61 1.00

conditVaried 164.05 45.50 278.85 1.00

Band 0.71 0.62 0.80 1.00

condit*Band -0.14 -0.26 -0.01 0.98
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Finally, to assess the ability of both conditions to discriminate between velocity bands, we fit

a model predicting velocity as a function of training condition and velocity band, with random

intercepts and random slopes for each participant. See Table 4 for the full model results. The

estimated coefficient for training condition (𝛽 = 164.05, 95% CrI [45.5, 278.85], pd = 99.61%)

suggests that the varied group tends to produce harder throws than the constant group, though

this is not, in and of itself, useful for assessing discrimination. Most relevant to the issue of

discrimination is the coefficient on the Band predictor (𝛽 = 0.71 95% CrI [0.62, 0.8], pd = 100%).

Although the median slope does fall underneath the ideal of value of 1, the fact that the 95% credible

interval does not contain 0 provides strong evidence that participants exhibited some discrimination

between bands. The significant negative estimate for the interaction between slope and condition

(𝛽 = -0.14, 95% CrI [-0.26, -0.01], pd = 98.39%), indicates that the discrimination was modulated

by training condition, with the varied participants showing less sensitivity between bands than the

constant condition (see Figure 6 and Figure 7).
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Figure 6: Experiment 1. Empirical distribution of velocities produced in the testing stage. Translu-
cent bands with dashed lines indicate the correct range for each velocity band.
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Figure 7: Experiment 1 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well participants
discriminated between velocity bands. B) The distribution of slope coefficients for each condition.
Larger slopes indicates better discrimination between target bands. C) Individual participant
slopes. Error bars represent 95% HDI.

Experiment 1 Summary

In Experiment 1, we investigated how variability in training influenced participants’ ability to

learn and extrapolate in a visuomotor task. Our findings that training with variable conditions

resulted in lower final training performance are consistent with much of the prior research on the

influence of training variability (Raviv et al., 2022; Soderstrom & Bjork, 2015), and are particularly

unsurprising in the present work, given that the constant group received three times the amount

of training on the velocity band common to the two conditions.

More importantly, the varied training group exhibited significantly larger deviations from the target

velocity bands during the testing phase, particularly for the extrapolation bands that were not
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encountered by either condition during training.

Experiment 2

Methods & Procedure

The task and procedure of Experiment 2 was identical to Experiment 1, with the exception that the

training and testing bands were reversed (see Figure 8). The Varied group trained on bands 100-

300, 350-550, 600-800, and the constant group trained on band 600-800. Both groups were tested

from all six bands. A total of 110 participants completed the experiment (Varied: 55, Constant:

55).

Figure 8: Experiment 2 Design. Constant and Varied participants complete different training
conditions. The training and testing bands are the reverse of Experiment 1.
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Figure 9: Experiment 2 Training Stage. Deviations from target band across training blocks. Lower
values represent greater accuracy.

Table 5: Experiment 2 - End of training performance. The Intercept represents the average
of the baseline condition (constant training), and the conditVaried coefficient reflects the difference
between the constant and varied groups. A larger positive coefficient indicates a greater devia-
tion (lower accuracy) for the varied group. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 91.01 80.67 101.26 1

conditVaried 36.15 16.35 55.67 1

Training. Figure 9 presents the deviations across training blocks for both constant and varied

training groups. We again compared training performance on the band common to both groups

(600-800). The full model results are shown in Table 1. The varied group had a significantly greater

deviation than the constant group in the final training block, ( 𝛽 = 36.15, 95% CrI [16.35, 55.67];

pd = 99.95%).
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Table 6: Experiment 2 testing accuracy. Main effects of condition and band type (training
vs. extrapolation), and the interaction between the two factors. The Intercept represents the
baseline condition (constant training & trained bands). Larger coefficients indicate larger deviations
from the baselines - and a positive interaction coefficient indicates disproportionate deviation for
the varied condition on the extrapolation bands. CrI values indicate 95% credible intervals. pd is
the probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 190.91 125.03 259.31 1.00

conditVaried -20.58 -72.94 33.08 0.78

bandTypeExtrapolation 38.09 -6.94 83.63 0.95

conditVaried:bandTypeExtrapolation 82.00 41.89 121.31 1.00

Testing Accuracy. The analysis of testing accuracy examined deviations from the target band as

influenced by training condition (Varied vs. Constant) and band type (training vs. extrapolation

bands). The results, summarized in Table 6, reveal no significant main effect of training condition

(𝛽 = -20.58, 95% CrI [-72.94, 33.08]; pd = 77.81%). However, the interaction between training

condition and band type was significant (𝛽 = 82, 95% CrI [41.89, 121.31]; pd = 100%), with the

varied group showing disproportionately larger deviations compared to the constant group on the

extrapolation bands (see Figure 10).
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Figure 10: Experiment 2 Testing Accuracy. A) Empirical Deviations from target band during
testing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent
95% credible intervals.

Table 7: Experiment 2 Testing Discrimination. Bayesian Mixed Model Predicting velocity as
a function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the Band
term reflect a larger slope, or greater sensitivity/discrimination. The interaction between condition
and band indicates the difference between constant and varied slopes. CrI values indicate 95%
credible intervals. pd is the probability of direction (the % of the posterior on the same side of 0
as the coefficient estimate)

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 362.64 274.85 450.02 1.00

conditVaried -8.56 -133.97 113.98 0.55

Band 0.71 0.58 0.84 1.00

condit*Band -0.06 -0.24 0.13 0.73

Testing Discrimination. Finally, to assess the ability of both conditions to discriminate between

velocity bands, we fit a model predicting velocity as a function of training condition and velocity
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band, with random intercepts and random slopes for each participant. The full model results are

shown in Table 7. The overall slope on target velocity band predictor was significantly positive,

(𝛽 = 0.71, 95% CrI [0.58, 0.84]; pd= 100%), indicating that participants exhibited discrimination

between bands. The interaction between slope and condition was not significant, (𝛽 = -0.06, 95%

CrI [-0.24, 0.13]; pd= 72.67%), suggesting that the two conditions did not differ in their ability to

discriminate between bands (see Figure 11 and Figure 12).
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Figure 11: Experiment 2. Empirical distribution of velocities produced in the testing stage. Translu-
cent bands with dash lines indicate the correct range for each velocity band.
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Figure 12: Experiment 2 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well participants
discriminated between velocity bands. B) The distribution of slope coefficients for each condition.
Larger slopes indicates better discrimination. C) Individual participant slopes. Error bars represent
95% HDI.

Experiment 2 Summary

Experiment 2 extended the findings of Experiment 1 by examining the effects of training variability

on extrapolation performance in a visuomotor function learning task, but with reversed training

and testing bands. Similar to Experiment 1, the Varied group exhibited poorer performance during

training and testing. However unlike experiment 1, the Varied and Constant groups did not show

a significant difference in their discrimination between bands.
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Experiment 3

Methods & Procedure

The major adjustment of Experiment 3 is for participants to receive ordinal feedback during train-

ing, in contrast to the continuous feedback of the prior experiments. After each training throw,

participants are informed whether a throw was too soft, too hard, or correct (i.e. within the target

velocity range). All other aspects of the task and design are identical to Experiments 1 and 2. We

utilized the order of training and testing bands from both of the prior experiments, thus assigning

participants to both an order condition (Original or Reverse) and a training condition (Constant

or Varied). Participants were once again recruited from the online Indiana University Introductory

Psychology Course pool. Following exclusions, 195 participants were included in the final analysis,

n=51 in the Constant-Original condition, n=59 in the Constant-Reverse condition, n=39 in the

Varied-Original condition, and n=46 in the Varied-Reverse condition.

Results

Table 8: Experiment 3 testing accuracy. Main effects of condition and band type (training
vs. extrapolation), and the interaction between the two factors. The Intercept represents the base-
line condition, (constant training, trained bands & original order), and the remaining coefficients
reflect the deviation from that baseline. Positive coefficients thus represent worse performance rel-
ative to the baseline, and a positive interaction coefficient indicates disproportionate deviation for
the varied condition or reverse order condition.

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 121.86 109.24 134.60 1.00

conditVaried 64.93 36.99 90.80 1.00

bandOrderReverse 1.11 -16.02 18.16 0.55

conditVaried:bandOrderReverse -77.02 -114.16 -39.61 1.00

Training. Figure 13 displays the average deviations from the target band across training blocks,

and Table 8 shows the results of the Bayesian regression model predicting the deviation from the

common band at the end of training (600-800 for reversed order, and 800-1000 for original order

conditions). The main effect of training condition is significant, with the varied condition showing
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larger deviations ( 𝛽 = 64.93, 95% CrI [36.99, 90.8]; pd = 100%). The main effect of band order

is not significant 𝛽 = 1.11, 95% CrI [-16.02, 18.16]; pd = 55.4%, however the interaction between

training condition and band order is significant, with the varied condition showing greater accuracy

in the reverse order condition ( 𝛽 = -77.02, 95% CrI [-114.16, -39.61]; pd = 100%).
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Figure 13: Experiment 3 training. Deviations from target band during training, shown separately
for groups trained with the original order (used in E1) and reverse order (used in E2).

Table 9: Experiment 3 testing accuracy. Main effects of condition and band type (training
vs. extrapolation), and the interaction between the two factors. The Intercept represents the base-
line condition, (constant training, trained bands & original order), and the remaining coefficients
reflect the deviation from that baseline. Positive coefficients thus represent worse performance rel-
ative to the baseline, and a positive interaction coefficient indicates disproportionate deviation for
the varied condition or reverse order condition.

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 288.65 199.45 374.07 1.00

conditVaried -40.19 -104.68 23.13 0.89

bandTypeExtrapolation -23.35 -57.28 10.35 0.92

bandOrderReverse -73.72 -136.69 -11.07 0.99

conditVaried:bandTypeExtrapolation 52.66 14.16 90.23 1.00

conditVaried:bandOrderReverse -37.48 -123.28 49.37 0.80
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Term Estimate

95% CrI

Lower

95% CrI

Upper pd

bandTypeExtrapolation:bandOrderReverse 80.69 30.01 130.93 1.00

conditVaried:bandTypeExtrapolation:bandOrder 30.42 -21.00 81.65 0.87

Testing Accuracy. Table 9 presents the results of the Bayesian mixed effects model predicting

absolute deviation from the target band during the testing stage. There was no significant main

effect of training condition,𝛽 = -40.19, 95% CrI [-104.68, 23.13]; pd = 89.31%, or band type,𝛽 =

-23.35, 95% CrI [-57.28, 10.35]; pd = 91.52%. However the effect of band order was significant,

with the reverse order condition showing lower deviations, 𝛽 = -73.72, 95% CrI [-136.69, -11.07];

pd = 98.89%. The interaction between training condition and band type was also significant 𝛽 =

52.66, 95% CrI [14.16, 90.23]; pd = 99.59%, with the varied condition showing disproprionately

large deviations on the extrapolation bands compared to the constant group. There was also a

significant interaction between band type and band order, 𝛽 = 80.69, 95% CrI [30.01, 130.93]; pd =

99.89%, such that the reverse order condition showed larger deviations on the extrapolation bands.

No other interactions were significant.
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Figure 14: Experiment 3 Testing Accuracy. A) Empirical Deviations from target band during
testing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Shown separately
for groups trained with the original order (used in E1) and reverse order (used in E2). Error bars
represent 95% credible intervals.

Table 10: Experiment 3 testing discrimination. Bayesian Mixed Model Predicting Vx as
a function of condition (Constant vs. Varied) and Velocity Band. The Intercept represents the
baseline condition (constant training & original order), and the Band coefficient represents the
slope for the baseline condition. The interaction terms which include condit and Band (e.g., con-
ditVaried:Band & conditVaried:bandOrderReverse:band) respectively indicate how the slopes of
the varied-original condition differed from the baseline condition, and how varied-reverse condition
differed from the varied-original condition

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 601.83 504.75 699.42 1.00

conditVaried 12.18 -134.94 162.78 0.56

bandOrderReverse 13.03 -123.89 144.67 0.58
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Term Estimate 95% CrI Lower 95% CrI Upper pd

Band 0.49 0.36 0.62 1.00

conditVaried:bandOrderReverse -338.15 -541.44 -132.58 1.00

conditVaried:Band -0.04 -0.23 0.15 0.67

bandOrderReverse:band -0.10 -0.27 0.08 0.86

conditVaried:bandOrderReverse:band 0.42 0.17 0.70 1.00

Testing Discrimination. The full results of the discrimination model are presented in Table 9. For

the purposes of assessing group differences in discrimination, only the coefficients including the

band variable are of interest. The baseline effect of band represents the slope coefficient for the

constant training - original order condition, this effect was significant 𝛽 = 0.49, 95% CrI [0.36,

0.62]; pd = 100%. Neither of the two way interactions reached significance, 𝛽 = -0.04, 95% CrI

[-0.23, 0.15]; pd = 66.63%, 𝛽 = -0.1, 95% CrI [-0.27, 0.08]; pd = 86.35%. However, the three way

interaction between training condition, band order, and target band was significant, 𝛽 = 0.42, 95%

CrI [0.17, 0.7]; pd = 99.96% - indicating a greater slope for the varied condition trained with reverse

order bands. This interaction is shown in Figure 15, where the steepness of the best fitting line for

the varied-reversed condition is noticeably steeper than the other conditions.
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Figure 15: Experiment 3. Empirical distribution of velocities produced in the testing stage. Translu-
cent bands with dash lines indicate the correct range for each velocity band.
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Figure 16: Experiment 3 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well participants
discriminated between velocity bands. B) The distribution of slope coefficients for each condition.
Larger slopes indicates better discrimination. C) Individual participant slopes. Error bars represent
95% HDI.
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Experiment 3 Summary

In Experiment 3, we investigated the effects of training condition (constant vs. varied) and band

type (training vs. extrapolation) on participants’ accuracy and discrimination during the testing

phase. Unlike the previous experiments, participants received only ordinal, not continuous valued,

feedback during the training phase. Additionally, Experiment 3 included both the original order

condition from Experiment 1 and the reverse order condition from Experiment 2. The results

revealed no significant main effects of training condition on testing accuracy, nor was there a

significant difference between groups in band discrimination. However, we observed a significant

three-way interaction for the discrimination analysis, indicating that the varied condition showed

a steeper slope coefficient on the reverse order bands compared to the constant condition. This

result suggests that varied training enhanced participants’ ability to discriminate between velocity

bands, but only when the band order was reversed during testing.

Computational Model

exp(c(100 − Stim)2)

exp(c(350 − Stim)2)

exp(c(600 − Stim)2)

exp(c(800 − Stim)2)

exp(c(1000 − Stim)2)

exp(c(1200 − Stim)2)

Stim
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350

600

800

1000

1200

Response

Figure 17: The Associative Learning Model (ALM). The diagram illustrates the basic structure of
the ALM model used in the present work. Input nodes are activated as a function of their similarity
to the lower-boundary of the target band. The generalization parameter, 𝑐, determines the degree
to which nearby input nodes are activated. The output nodes are activated as a function of the
weighted sum of the input nodes. During training, when feedback is provided, network weights
connecting the input layer to the output layer are updated via the delta rule.
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The modeling goal is to implement a full process model capable of both 1) producing novel re-

sponses and 2) modeling behavior in both the learning and testing stages of the experiment. For

this purpose, we will apply the associative learning model (ALM) and the EXAM model of function

learning (DeLosh et al., 1997). ALM is a simple connectionist learning model which closely resem-

bles Kruschke’s ALCOVE model (Kruschke, 1992), with modifications to allow for the generation

of continuous responses.

ALM & Exam

ALM is a localist neural network model (Page, 2000), with each input node corresponding to a

particular stimulus, and each output node corresponding to a particular response value. The units

in the input layer activate as a function of their Gaussian similarity to the input stimulus ( a_i(X)

= exp(-c(X - X_i)^2) ). So, for example, an input stimulus of value 55 would induce maximal

activation of the input unit tuned to 55. Depending on the value of the generalization parameter,

the nearby units (e.g., 54 and 56; 53 and 57) may also activate to some degree. The units in the

input layer activate as a function of their similarity to a presented stimulus. The input layer is

fully connected to the output layer, and the activation for any particular output node is simply

the weighted sum of the connection weights between that node and the input activations. The

network then produces a response by taking the weighted average of the output units (recall that

each output unit has a value corresponding to a particular response). During training, the network

receives feedback which activates each output unit as a function of its distance from the ideal level

of activation necessary to produce the correct response. The connection weights between input and

output units are then updated via the standard delta learning rule, where the magnitude of weight

changes are controlled by a learning rate parameter.

The EXAM model is an extension of ALM, with the same learning rule and representational scheme

for input and output units. EXAM differs from ALM only in its response rule, as it includes a

linear extrapolation mechanism for generating novel responses. When a novel test stimulus, 𝑋 , is

presented, EXAM first identifies the two nearest training stimuli, 𝑋1 and 𝑋2, that bracket 𝑋 . This

is done based on the Gaussian activation of input nodes, similar to ALM, but focuses on identifying

the closest known points for extrapolation.

Slope Calculation: EXAM calculates a local slope, 𝑆, using the responses associated with 𝑋1 and

𝑋2. This is computed as:
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𝑆 = 𝑚(𝑋1) − 𝑚(𝑋2)
𝑋1 − 𝑋2

where 𝑚(𝑋1) and 𝑚(𝑋2) are the output values from ALM corresponding to the 𝑋1 and 𝑋2 inputs.

Response Generation: The response for the novel stimulus 𝑋 is then extrapolated using the

slope 𝑆:

𝐸[𝑌 |𝑋] = 𝑚(𝑋1) + 𝑆 ⋅ |𝑋 − 𝑋1|

Here, 𝑚(𝑋1) is the ALM response value from the training data for the stimulus closest to 𝑋 , and

(𝑋 − 𝑋1) represents the distance between the novel stimulus and the nearest training stimulus.

Although this extrapolation rule departs from a strictly similarity-based generalization mechanism,

EXAM is distinct from pure rule-based models in that it remains constrained by the weights

learned during training. EXAM retrieves the two nearest training inputs, and the ALM responses

associated with those inputs, and computes the slope between these two points. The slope is then

used to extrapolate the response to the novel test stimulus. Because EXAM requires at least two

input-output pairs to generate a response, additional assumptions were required in order for it to

generate resposnes for the constant group. We assumed that participants come to the task with

prior knowledge of the origin point (0,0), which can serve as a reference point necessary for the

model to generate responses for the constant group. This assumption is motivated by previous

function learning research (Brown & Lacroix, 2017), which through a series of manipulations of the

y intercept of the underlying function, found that participants consistently demonstrated knowledge

of, or a bias towards, the origin point (see Kwantes & Neal (2006) for additional evidence of such

a bias in function learning tasks).

See Table 11 for a full specification of the equations that define ALM and EXAM, and Figure 17

for a visual representation of the ALM model.
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Table 11: ALM & EXAM Equations

ALM Response Generation

Input Activation 𝑎𝑖(𝑋) = 𝑒−𝑐(𝑋−𝑋𝑖)2

∑𝑀
𝑘=1 𝑒−𝑐(𝑋−𝑋𝑘)2

Input nodes activate as a

function of Gaussian similarity

to stimulus

Output Activation 𝑂𝑗(𝑋) = ∑𝑀
𝑘=1 𝑤𝑗𝑖 ⋅ 𝑎𝑖(𝑋) Output unit 𝑂𝑗 activation is the

weighted sum of input

activations and association

weights

Output Probability 𝑃[𝑌𝑗 |𝑋 ] = 𝑂𝑗(𝑋)
∑𝑀

𝑘=1 𝑂𝑘(𝑋) The response, 𝑌𝑗 probabilites
computed via Luce’s choice rule

Mean Output 𝑚(𝑋) = ∑𝐿
𝑗=1 𝑌𝑗 ⋅ 𝑂𝑗(𝑥)

∑𝑀
𝑘=1 𝑂𝑘(𝑋) Weighted average of

probabilities determines

response to X

ALM Learning

Feedback 𝑓𝑗(𝑍) = 𝑒−𝑐(𝑍−𝑌𝑗)2 feedback signal Z computed as

similarity between ideal

response and observed response

magnitude of error Δ𝑗𝑖 = (𝑓𝑗(𝑍) − 𝑜𝑗(𝑋))𝑎𝑖(𝑋) Delta rule to update weights.

Update Weights 𝑤𝑛𝑒𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂Δ𝑗𝑖 Updates scaled by learning rate

parameter 𝜂.
EXAM Extrapolation

Instance Retrieval 𝑃[𝑋𝑖|𝑋 ] = 𝑎𝑖(𝑋)
∑𝑀

𝑘=1 𝑎𝑘(𝑋) Novel test stimulus 𝑋 activates

input nodes 𝑋𝑖
Slope Computation 𝑆 = 𝑚(𝑋1)−𝑚(𝑋2)

𝑋1−𝑋2
Slope value, 𝑆 computed from

nearest training instances

Response 𝐸[𝑌 |𝑋𝑖] = 𝑚(𝑋𝑖) + 𝑆 ⋅ [𝑋 − 𝑋𝑖] Final EXAM response is the

ALM response for the nearest

training stimulus, 𝑚(𝑋𝑖),
adjusted by local slope 𝑆.
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Model Fitting

To fit ALM and EXAM to our participant data, we employ a similar method to McDaniel et al.

(2009), wherein we examine the performance of each model after being fit to various subsets of the

data. Each model was fit to the data with three separate procedures: 1) fit to maximize predictions

of the testing data, 2) fit to maximize predictions of both the training and testing data, 3) fit to

maximize predictions of the just the training data. We refer to this fitting manipulations as “Fit

Method” in the tables and figures below. It should be emphasized that for all three fit methods,

the ALM and EXAM models behave identically - with weights updating only during the training

phase. Models were fit separately to the data of each individual participant. The free parameters

for both models are the generalization (𝑐) and learning rate (𝑙𝑟) parameters. Parameter estimation

was performed using approximate Bayesian computation (ABC), which we describe in detail below.

Approximate Bayesian Computation

To estimate the parameters of ALM and EXAM, we used approximate Bayesian computation

(ABC), enabling us to obtain an estimate of the posterior distribution of the generalization

and learning rate parameters for each individual. ABC belongs to the class of simulation-

based inference methods (Cranmer et al., 2020), which have begun being used for parameter

estimation in cognitive modeling relatively recently (Kangasrääsiö et al., 2019; Turner et al.,

2016; Turner & Van Zandt, 2012). Although they can be applied to any model from which

data can be simulated, ABC methods are most useful for complex models that lack an explicit

likelihood function (e.g., many neural network models).

The general ABC procedure is to 1) define a prior distribution over model parameters. 2)

sample candidate parameter values, 𝜃∗, from the prior. 3) Use 𝜃∗ to generate a simulated

dataset, 𝐷𝑎𝑡𝑎𝑠𝑖𝑚. 4) Compute a measure of discrepancy between the simulated and observed

datasets, 𝑑𝑖𝑠𝑐𝑟𝑒𝑝(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠). 5) Accept 𝜃∗ if the discrepancy is less than the tolerance

threshold, 𝜖, otherwise reject 𝜃∗. 6) Repeat until the desired number of posterior samples are

obtained.

Although simple in the abstract, implementations of ABC require researchers to make a num-

ber of non-trivial decisions as to i) the discrepancy function between observed and simulated

data, ii) whether to compute the discrepancy between trial level data, or a summary statistic

of the datasets, iii) the value of the minimum tolerance 𝜖 between simulated and observed
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data. For the present work, we follow the guidelines from previously published ABC tutorials

(Farrell & Lewandowsky, 2018; Turner & Van Zandt, 2012). For the test stage, we summa-

rized datasets with mean velocity of each band in the observed dataset as 𝑉 (𝑘)
𝑜𝑏𝑠 and in the

simulated dataset as 𝑉 (𝑘)
𝑠𝑖𝑚 , where 𝑘 represents each of the six velocity bands. For comput-

ing the discrepancy between datasets in the training stage, we aggregated training trials into

three equally sized blocks (separately for each velocity band in the case of the varied group).

After obtaining the summary statistics of the simulated and observed datasets, the discrep-

ancy was computed as the mean of the absolute difference between simulated and observed

datasets (Equation 1 and Equation 2). For the models fit to both training and testing data,

discrepancies were computed for both stages, and then averaged together.

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑒𝑠𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚 , 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
6

6
∑
𝑘=1

|𝑉 (𝑘)
𝑜𝑏𝑠 − 𝑉 (𝑘)

𝑠𝑖𝑚 | (1)

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

|𝑉 (𝑗)
𝑜𝑏𝑠,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑉 (𝑗)

𝑠𝑖𝑚,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 |

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑣𝑎𝑟 𝑖𝑒𝑑(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠 × 3

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

3
∑
𝑘=1

|𝑉 (𝑗,𝑘)
𝑜𝑏𝑠,𝑣𝑎𝑟 𝑖𝑒𝑑 − 𝑉 (𝑗,𝑘)

𝑠𝑖𝑚,𝑣𝑎𝑟 𝑖𝑒𝑑 |

(2)

The final component of our ABC implementation is the determination of an appropriate value

of 𝜖. The setting of 𝜖 exerts strong influence on the approximated posterior distribution.

Smaller values of 𝜖 increase the rejection rate, and improve the fidelity of the approximated

posterior, while larger values result in an ABC sampler that simply reproduces the prior

distribution. Because the individual participants in our dataset differed substantially in terms

of the noisiness of their data, we employed an adaptive tolerance setting strategy to tailor

𝜖 to each individual. The initial value of 𝜖 was set to the overall standard deviation of

each individual’s velocity values. Thus, sampled parameter values that generated simulated

data within a standard deviation of the observed data were accepted, while worse performing

parameters were rejected. After every 300 samples the tolerance was allowed to increase only

if the current acceptance rate of the algorithm was less than 1%. In such cases, the tolerance

was shifted towards the average discrepancy of the 5 best samples obtained thus far. To ensure

the acceptance rate did not become overly permissive, 𝜖 was also allowed to decrease every
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time a sample was accepted into the posterior.

For each of the 156 participants from Experiment 1, the ABC algorithm was run until 200 samples

of parameters were accepted into the posterior distribution. Obtaining this number of posterior

samples required an average of 205,000 simulation runs per participant. Fitting each combination

of participant, Model (EXAM & ALM), and fitting method (Test only, Train only, Test & Train)

required a total of 192 million simulation runs. To facilitate these intensive computational demands,

we used the Future Package in R (Bengtsson, 2021), allowing us to parallelize computations across

a cluster of ten M1 iMacs, each with 8 cores.

Modelling Results

Table 12: Model errors predicting empirical data from Experiment 1 - aggregated over the full
posterior distribution for each participant. Note that Fit Method refers to the subset of the data
that the model was trained on, while Task Stage refers to the subset of the data that the model
was evaluated on.

ALM EXAM

Task Stage Fit Method Constant Varied Constant Varied

Test Fit to Test Data 199.93 103.36 104.01 85.68
Test Fit to Test & Training Data 216.97 170.28 127.94 144.86
Test Fit to Training Data 467.73 291.38 273.30 297.91
Train Fit to Test Data 297.82 2, 016.01 53.90 184.00
Train Fit to Test & Training Data 57.40 132.32 42.92 127.90
Train Fit to Training Data 51.77 103.48 51.43 107.03
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Figure 18: Posterior Distributions of 𝑐 and 𝑙𝑟 parameters. Points represent median values, thicker
intervals represent 66% credible intervals and thin intervals represent 95% credible intervals around
the median. Note that the y-axes of the plots for the c parameter are scaled logarithmically.
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Figure 19: Model residuals for each combination of training condition, fit method, and model.
Residuals reflect the difference between observed and predicted values. Lower values indicate better
model fit. Note that y-axes are scaled differently between facets. A) Residuals predicting each
block of the training data. B) Residuals predicting each band during the testing stage. Bolded
bars indicate bands that were trained, non-bold bars indicate extrapolation bands.
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The posterior distributions of the 𝑐 and 𝑙𝑟 parameters are shown Figure 18, and model predictions

are shown alongside the empirical data in Figure 20. There were substantial individual differences in

the posteriors of both parameters, with the within-group individual differences generally swamped

any between-group or between-model differences. The magnitude of these individual differences

remains even if we consider only the single best parameter set for each subject.

We used the posterior distribution of 𝑐 and 𝑙𝑟 parameters to generate a posterior predictive distribu-

tion of the observed data for each participant, which then allows us to compare the empirical data

to the full range of predictions from each model. Aggregated residuals are displayed in Figure 19.

The pattern of training stage residual errors are unsurprising across the combinations of models

and fitting method . Differences in training performance between ALM and EXAM are generally

minor (the two models have identical learning mechanisms). The differences in the magnitude of

residuals across the three fitting methods are also straightforward, with massive errors for the ‘fit

to Test Only’ model, and the smallest errors for the ‘fit to train only’ models. It is also noteworthy

that the residual errors are generally larger for the first block of training, which is likely due to

the initial values of the ALM weights being unconstrained by whatever initial biases participants

tend to bring to the task. Future work may explore the ability of the models to capture more fine

grained aspects of the learning trajectories. However for the present purposes, our primary interest

is in the ability of ALM and EXAM to account for the testing patterns while being constrained,

or not constrained, by the training data. All subsequent analyses and discussion will thus focus on

the testing stage.

The residuals of the model predictions for the testing stage (Figure 19) show an unsurprising

pattern across fitting methods - with models fit only to the test data showing the best performance,

followed by models fit to both training and test data, and with models fit only to the training data

showing the worst performance (note that Y-axes are scaled different between plots). Although

EXAM tends to perform better for both Constant and Varied participants (see also Figure 21),

the relative advantage of EXAM is generally larger for the Constant group - a pattern consistent

across all three fitting methods. The primary predictive difference between ALM and EXAM is

made clear in Figure 20, which directly compares the observed data against the posterior predictive

distributions for both models. Regardless of how the models are fit, only EXAM can capture the

pattern where participants are able to discriminate all 6 target bands.
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Figure 20: Empirical data and Model predictions for mean velocity across target bands. Fitting
methods (Test Only, Test & Train, Train Only) - are separated across rows, and Training Condition
(Constant vs. Varied) are separated by columns. Each facet contains the predictions of ALM and
EXAM, alongside the observed data.
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Figure 21: A-C) Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Var-
ied). Lower values on the y axis indicate better model fit. D) Specific contrasts of model perfor-
mance comparing 1) EXAM fits between constant and varied training; 2) ALM vs. EXAM for the
varied group; 3) ALM fits between constant and varied. Negative error differences indicate that
the term on the left side (e.g., EXAM Constant) tended to have smaller model residuals.

To quantitatively assess the differences in performance between models, we fit a Bayesian regression

model predicting the errors of the posterior predictions of each models as a function of the Model

(ALM vs. EXAM) and training condition (Constant vs. Varied).

Model errors were significantly lower for EXAM (𝛽 = -37.54, 95% CrI [-60.4, -14.17], pd = 99.85%)

than ALM. There was also a significant interaction between Model and Condition (𝛽 = 60.42, 95%

CrI [36.17, 83.85], pd = 100%), indicating that the advantage of EXAM over ALM was significantly

greater for the constant group. To assess whether EXAM predicts performance significantly better

for Constant than for Varied subjects, we calculated the difference in model error between the
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Constant and Varied conditions specifically for EXAM. The results indicated that the model error

for EXAM was significantly lower in the Constant condition compared to the Varied condition,

with a mean difference of -22.88 (95% CrI [-46.02, -0.97], pd = 0.98).

Table 13: Models errors predicting empirical data - aggregated over all participants, posterior
parameter values, and velocity bands. Note that Fit Method refers to the subset of the data that
the model was trained on, while Task Stage refers to the subset of the data that the model was
evaluated on.

E2 E3

ALM EXAM ALM EXAM

Task Stage Constant Varied Constant Varied Constant Varied Constant Varied

Fit to Test Data

Test 239.7 129.8 99.7 88.2 170.1 106.1 92.3 72.8
Train 53.1 527.1 108.1 169.3 70.9 543.5 157.8 212.7

Fit to Test & Training Data

Test 266.0 208.2 125.1 126.4 197.7 189.5 130.0 128.5
Train 40.0 35.4 30.4 23.6 49.1 85.6 49.2 78.4

Fit to Training Data

Test 357.4 295.9 305.1 234.5 415.0 298.8 295.5 243.7
Train 42.5 23.0 43.2 22.6 51.4 63.8 51.8 65.3
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Figure 22: Empirical data and Model predictions from Experiment 2 and 3 for the testing stage.
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indicate extrapolation bands.
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Table 14: Results of Bayesian Regression models predicting model error as a function of Model
(ALM vs. EXAM), Condition (Constant vs. Varied), and the interaction between Model and Con-
dition. The values represent the estimated coefficient for each term, with 95% credible intervals in
brackets. The intercept reflects the baseline of ALM and Constant. The other estimates indicate
deviations from the baseline for the EXAM mode and varied condition. Lower values indicate
better model fit.

Credible Interval

Experiment Term Estimate 95% CrI Lower 95% CrI Upper pd

Experiment 1

Exp 1 Intercept 176.3 156.9 194.6 1.00
Exp 1 ModelEXAM −88.4 −104.5 −71.8 1.00
Exp 1 conditVaried −37.5 −60.4 −14.2 1.00
Exp 1 ModelEXAM:conditVaried 60.4 36.2 83.8 1.00

Experiment 2

Exp 2 Intercept 245.9 226.2 264.5 1.00
Exp 2 ModelEXAM −137.7 −160.2 −115.5 1.00
Exp 2 conditVaried −86.4 −113.5 −59.3 1.00
Exp 2 ModelEXAM:conditVaried 56.9 25.3 88.0 1.00

Experiment 3

Exp 3 Intercept 164.8 140.1 189.4 1.00
Exp 3 ModelEXAM −65.7 −86.0 −46.0 1.00
Exp 3 conditVaried −40.6 −75.9 −3.0 0.98
Exp 3 bandOrderReverse 25.5 −9.3 58.7 0.93
Exp 3 ModelEXAM:conditVaried 41.9 11.2 72.5 0.99
Exp 3 ModelEXAM:bandOrderReverse −7.3 −34.5 21.1 0.70
Exp 3 conditVaried:bandOrderReverse 30.8 −19.6 83.6 0.88
Exp 3 ModelEXAM:conditVaried:bandOrderReverse −60.6 −101.8 −18.7 1.00

Model Fits to Experiment 2 and 3. Data from Experiments 2 and 3 were fit to ALM and EXAM

in the same manner as Experiment 1. For brevity, we only plot and discuss the results of the

“fit to training and testing data” models - results from the other fitting methods can be found in

the appendix. The model fitting results for Experiments 2 and 3 closely mirrored those observed

in Experiment 1. The Bayesian regression models predicting model error as a function of Model

(ALM vs. EXAM), Condition (Constant vs. Varied), and their interaction (see Table 14) revealed

a consistent main effect of Model across all three experiments. The negative coefficients for the

ModelEXAM term (Exp 2: 𝛽 = -86.39, 95% CrI -113.52, -59.31, pd = 100%; Exp 3: 𝛽 = -40.61,

95% CrI -75.9, -3.02, pd = 98.17%) indicate that EXAM outperformed ALM in both experiments.
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Furthermore, the interaction between Model and Condition was significant in both Experiment

2 (𝛽 = 56.87, 95% CrI 25.26, 88.04, pd = 99.98%) and Experiment 3 (𝛽 = 41.9, 95% CrI 11.2,

72.54, pd = 99.35%), suggesting that the superiority of EXAM over ALM was more pronounced

for the Constant group compared to the Varied group, as was the case in Experiment 1. Recall

that Experiment 3 included participants in both the original and reverse order conditions - and

that this manipulation interacted with the effect of training condition. We thus also controlled for

band order in our Bayesian Regression assessing the relative performance of EXAM and ALM in

Experiment 3. There was a significant three way interaction between Model, Training Condition,

and Band Order (𝛽 = -60.6, 95% CrI -101.8, -18.66, pd = 99.83%), indicating that the relative

advantage of EXAM over ALM was only more pronounced in the original order condition, and not

the reverse order condition (see Figure 23).

160

200

240

Constant Varied

Condition

M
od

el
 E

rr
or

E2. Model Error
A.

100

150

200

250

ALM EXAM

Model

B.

50

100

150

200

250

ALM EXAM

Model

Constant

Varied

C.

bandOrder = Original bandOrder = Reverse

ALM EXAM ALM EXAM

100

150

200

Model

M
od

el
 E

rr
or

Constant

Varied

E3. Model Error
D.

Figure 23: Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Varied) on
Model Error for Experiments 2 and 3 data. Experiment 3 also includes a condition for the order
of training vs. testing bands (original order vs. reverse order).

Computational Model Summary. Across all three experiments, the model fits consistently favored
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the Extrapolation-Association Model (EXAM) over the Associative Learning Model (ALM). This

preference for EXAM was particularly pronounced for participants in the constant training con-

ditions (note the positive coefficients on ModelEXAM:conditVaried interaction terms Table 14).

This pattern is clearly illustrated in Figure 24, which plots the difference in model errors between

ALM and EXAM for each individual participant. Both varied and constant conditions have a

greater proportion of subjects better fit by EXAM (positive error differences), with the magnitude

of EXAM’s advantage visibly larger for the constant group.

The superior performance of EXAM, especially for the constant training groups, may initially

seem counterintuitive. One might assume that exposure to multiple, varied examples would be

necessary to extract an abstract rule. However, EXAM is not a conventional rule-based model; it

does not require the explicit abstraction of a rule. Instead, rule-based responses emerge during the

retrieval process. The constant groups’ formation of a single, accurate input-output association,

combined with the usefulness of the zero point, seem to have been sufficient for EXAM to capture

their performance. A potential concern is that the assumption of participants utilizing the zero

point essentially transforms the extrapolation problem into an interpolation problem. However,

this concern is mitigated by the consistency of the results across both the original and reversed

order conditions (the testing extrapolation bands fall in between the constant training band and

the 0 point in experiment 1, but not in experiment 2).

The fits to the individual participants also reveal a number of interesting cases where the mod-

els struggle to capture the data (Figure 25). For example participant 68 exhibits a strong non-

monotonicity in the highest velocity band, a pattern which ALM can mimic, but which EXAM

cannot capture, given that it enforces a simple linear relationship between target velocity and re-

sponse. Participant 70 (lower right corner of Figure 25) had a roughly parabolic response pattern

in their observed data, a pattern which neither model can properly reproduce, but which causes

EXAM to perform particularly poorly.

Modeling Limitations. The present work compared models based on their ability to predict the

observed data, without employing conventional model fit indices such as the Akaike Information

Criterion (AIC) or the Bayesian Information Criterion (BIC). These indices, which penalize models

based on their number of free parameters, would have been of limited utility in the current case,

as both ALM and EXAM have two free parameters. However, despite having the same number

of free parameters, EXAM could still be considered the more complex model, as it incorporates
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all the components of ALM plus an additional mechanism for rule-based responding. A more

comprehensive model comparison approach might involve performing cross-validation with a held-

out subset of the data (Mezzadri et al., 2022) or penalizing models based on the range of patterns

they can produce (Dome & Wills, 2023), under the assumption that more constrained models are

more impressive when they do adequately fit a given pattern of results.
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General Discussion

Across three experiments, we investigated the impact of training variability on learning and ex-

trapolation in a visuomotor function learning task.

In Experiment 1, participants in the varied training condition, who experienced a wider range of

velocity bands during training, showed lower accuracy at the end of training compared to those

in the constant training condition. Crucially, during the testing phase, the varied group exhibited

significantly larger deviations from the target velocity bands, particularly for the extrapolation

bands that were not encountered during training. The varied group also showed less discrimination

between velocity bands, as evidenced by shallower slopes when predicting response velocity from

target velocity band.
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Experiment 2 extended these findings by reversing the order of the training and testing bands.

Similar to Experiment 1, the varied group demonstrated poorer performance during both training

and testing phases. However, unlike Experiment 1, the varied group did not show a significant

difference in discrimination between bands compared to the constant group.

In Experiment 3, we provided only ordinal feedback during training, in contrast to the continuous

feedback provided in the previous experiments. Participants were assigned to both an order condi-

tion (original or reverse) and a training condition (constant or varied). The varied condition showed

larger deviations at the end of training, consistent with the previous experiments. Interestingly,

there was a significant interaction between training condition and band order, with the varied con-

dition showing greater accuracy in the reverse order condition. During testing, the varied group

once again exhibited larger deviations, particularly for the extrapolation bands. The reverse order

conditions showed smaller deviations compared to the original order conditions. Discrimination

between velocity bands was poorer for the varied group in the original order condition, but not in

the reverse order condition.

All three of our experiments yielded evidence that varied training conditions produced less learning

by the end of training, a pattern consistent with much of the previous research on the influence of

training variability (Catalano & Kleiner, 1984; Soderstrom & Bjork, 2015; Wrisberg et al., 1987).

The sole exception to this pattern was the reverse order condition in Experiment 3, where the varied

group was not significantly worse than the constant group. Neither the varied condition trained

with the same reverse-order items in Experiment 2, nor the original-order varied condition trained

with ordinal feedback in Experiment 3 were able to match the performance of their complementary

constant groups by the end of training, suggesting that the relative success of the ordinal-reverse

ordered varied group cannot be attributed to item or feedback effects alone.

Our findings also diverge from the two previous studies that cleanly manipulated the variability of

training items in a function learning task (DeLosh et al., 1997; van Dam & Ernst, 2015), although

the varied training condition of van Dam & Ernst (2015) also exhibited less learning, neither of these

previous studies observed any difference between training conditions in extrapolation to novel items.

Like DeLosh et al. (1997) , our participants exhibited above chance extrapolation/discrimination

of novel items, however they observed no difference between any of their three training conditions.

A noteworthy difference difference between our studies is that DeLosh et al. (1997) trained par-

ticipants with either 8, 20, or 50 unique items (all receiving the same total number of training

47



trials). These larger sets of unique items, combined with the fact that participants achieved near

ceiling level performance by the end of training, may have made it more difficult to observe any

between-group differences of training variation in their study. van Dam & Ernst (2015) ’s vari-

ability manipulation was more similar to our own, as they trained participants with either 2 or 5

unique items. However, although the mapping between their input stimuli and motor responses

was technically linear, the input dimension was more complex than our own, as it was defined by

the degree of “spikiness” of the input shape. This entirely arbitrary mapping also would have pre-

cluded any sensible “0” point, which may partially explain why neither of their training conditions

were able to extrapolate linearly in the manner observed in the current study or in DeLosh et al.

(1997).

Limitations

While the present study provides valuable insights into the influence of training variability on vi-

suomotor function learning and extrapolation, there are several limitations that should be flagged.

First, although the constant training group never had experience from a velocity band closer to

the extrapolation bands than the varied group, they always had a three times more trials with the

nearest velocity band. Such a difference may be an unavoidable consequence of a varied vs. constant

design which matches the total number of training trials between the two groups. However, in order

to more carefully tease apart the influence of variability from the influence of frequency/repetition

effects, future research could explore alternative designs that maintain the variability manipulation

while equating the amount of training on the nearest examples across conditions, such as by in-

creasing the total number of trials for the varied group. Another limitation is that the testing stage

did not include any interpolation items, i.e. the participants were tested only from the training

bands they experienced during training, or from extrapolation bands. The absence of interpo-

lation testing makes it more difficult to distinguish between the effects of training variability on

extrapolation specifically, as opposed to generalization more broadly. Of course, the nature of the

constant training condition makes interpolation testing impossible to implement, however future

studies might compare training regimes that each include at least 2 distinct items, but still differ

in the total amount of variability experienced, which would then allow groups to be compared in

terms of both interpolation and extrapolation testing. Finally, the task employed in the present

study consisted of only a linear, positive function. Previous work in human function learning

has repeatedly shown that such functions are among the easiest to learn, but that humans are
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nonetheless capable of learning negative, non-linear, or discontinuous functions (Busemeyer et al.,

1997; DeLosh et al., 1997; Kalish, 2013; McDaniel et al., 2009). It thus remains an open question

as to whether the influence of training variability might interact with various components of the

to-be-learned function.

Supplementary

Apppendix available at https://tegorman13.github.io/htw/Analysis/e1_Analysis.html
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