
Report
Perceptual Learning Gene
ralization from Sequential
Perceptual Training as a Change in Learning Rate
Highlights
d Training on multiple perceptual tasks produced significant

learning generalization

d Learning generalizationmanifested as increased learning rate

(‘‘learning to learn’’)

d Standard methodology would tend to miss or misidentify this

type of generalization
Kattner et al., 2017, Current Biology 27, 840–846
March 20, 2017 ª 2017 Elsevier Ltd.
http://dx.doi.org/10.1016/j.cub.2017.01.046
Authors

Florian Kattner, Aaron Cochrane,

Christopher R. Cox,

Thomas E. Gorman, C. Shawn Green

Correspondence
cshawn.green@wisc.edu

In Brief

The extent to which learning generalizes

to new tasks is a key concern in the study

of perceptual learning. Kattner,

Cochrane, et al. report three experiments

demonstrating that training on a series of

tasks can induce generalization that

manifests only in terms of increases in

learning rate (‘‘learning to learn’’), not

immediate performance.

mailto:cshawn.green@wisc.edu
http://dx.doi.org/10.1016/j.cub.2017.01.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2017.01.046&domain=pdf


Current Biology

Report
Perceptual Learning Generalization from Sequential
Perceptual Training as a Change in Learning Rate
Florian Kattner,1,3 Aaron Cochrane,2,3 Christopher R. Cox,2 Thomas E. Gorman,2 and C. Shawn Green2,4,*
1Institute of Psychology, Technische Universit€at Darmstadt, Alexanderstr. 10, 64283 Darmstadt, Germany
2Department of Psychology, University of Wisconsin–Madison, 1202 West Johnson Street, Madison, WI 53706-1611, USA
3Co-first author
4Lead Contact

*Correspondence: cshawn.green@wisc.edu

http://dx.doi.org/10.1016/j.cub.2017.01.046
SUMMARY

With practice, humans tend to improve their perfor-
mance on most tasks. But do such improvements
then generalize to new tasks? Although early work
documented primarily task-specific learning out-
comes in the domain of perceptual learning [1–3],
an emerging body of research has shown that signif-
icant learning generalization is possible under some
training conditions [4–9]. Interestingly, however,
research in this vein has focused nearly exclusively
on just one possible manifestation of learning gener-
alization, wherein training on one task produces an
immediate boost to performance on the new task.
For instance, it is this form of generalization that is
most frequently referred to when discussing learning
‘‘transfer’’ [10, 11]. Essentially no work in this domain
has focused on a second possible manifestation of
generalization, wherein the knowledge or skills ac-
quired via training, despite not being directly appli-
cable to the new task, nonetheless allow the new
task to be learned more efficiently [12–15]. Here, in
both the visual category learning and visual percep-
tual learning domains, we demonstrate that sequen-
tially training participants on tasks that share a com-
mon high-level task structure can produce faster
learning of new tasks, even in cases where there is
no immediate benefit to performance on the new
tasks. We further show that methods commonly em-
ployed in the field may fail to detect or else conflate
generalization that manifests as increased learning
rate with generalization that manifests as immediate
boosts to performance. These results thus lay the
foundation for the various routes to learning general-
ization to be more thoroughly explored

RESULTS

Experiment 1: Generalization as a Change in Learning
Rate in Novel-Shape Categorization
We have previously identified multiple distinct mechanisms that

could, in principle, promote increases in the rate at which new
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tasks are learned (which has been referred to as the ‘‘learning

to learn’’ form of generalization) without engendering any imme-

diate benefit to performance [15–17]. In the present paper,

we chose to focus on one of these mechanisms, which we

have referred to as the ‘‘knowledge-based’’ mechanism. Here,

through exposure to many different tasks that all share some

higher-level structure or components, participants could poten-

tially learn those regularities that exist across the individual tasks

[14, 18–20]. Importantly, knowledge of such higher-level regular-

ities need not provide any direct insight regarding how one

should interpret or respond to stimuli when beginning a new

task. Instead, this knowledge may serve to constrain or order

the to-be-learned task space. If this is the case, such training

will produce faster learning of new tasks without any immediate

benefit to performance.

As an initial demonstration of the conditions that promote this

form of generalization, we chose a domain where it is reasonably

straightforward to induce the necessary higher-level shared task

structure. While there are a number of domains where this

would be possible, we selected novel-shape categorization.

This choice was based primarily on the robust body of work out-

lining clear similarities between the novel-shape categorization

domain and the perceptual learning domain, suggesting that

the former could be a good model for the latter [21–26].

We first created a continuous 2D space from which individual

novel shapes could be drawn. We then defined eight unique cat-

egories within that space, pairs of which could be utilized in four

separate categorization learning tasks (Figure 1A; Supplemental

Experimental Procedures). Importantly, while the individual

shapes, categories, and category boundaries were unique to

each learning task, many other higher-order features were

shared across learning tasks. For instance, although the cate-

gories were placed in different parts of the 2D space in the

different learning tasks, the general shape of the categories

was shared (i.e., 2D Gaussians with similar parameters). Other

shared aspects included the fact that the two to-be-discrimi-

nated categories in each learning task were always linearly sepa-

rable and, furthermore, were always separable along a single

dimension. Critically, although this shared structure provided

no information that would be immediately applicable in a new

task, it should nonetheless allow new tasks that share this

same structure to be learned more quickly.

Twenty-four participants underwent this series of four novel-

shape categorization learning tasks (60 trials each). In examining

their behavior, we first assessed whether any immediate
d.
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Figure 1. Sequential Novel Shape Categorization Task and Results

(A) Novel shapes (‘‘feathers’’) were drawn from a 2D space, where one

dimension corresponded to the number of branches on the feather and the

other dimension corresponded to the orientation of the branches (e.g., a point

in the top left of this space produces a feather with many branches with a very

flat orientation, while a point in the bottom right of this space produces a

feather with fewbrancheswith a very steep orientation). For each learning task,

feathers were drawn from one of two categories defined by 2D Gaussians in

the space (e.g., category A versus category B in the left panel and category C

versus category D in the right panel). While the various tasks involve totally

different shapes, categories, and category boundaries, they share a certain

degree of high-level structure, including the general shape of the categories in

the space and the fact that the discriminant that best separates the categories

lies along a single dimension.

(B) Although participants started with the same (chance-level) performance in

both their first and final categorization tasks, they learned much more quickly

in the final categorization task as compared to the first (note that, for corre-

spondence with experiment 2, we plotted only the first and final categorization

tasks here; see Figure S1 for behavioral performance across all four catego-

rization tasks and Figure S2 for the bootstrapped learning slope estimates

across all four categorization tasks). Error bands represent 95% confidence

intervals.
changes in performance were observed from task to task by

examining first-trial performance across the four tasks. Consis-

tent with our expectation that no such immediate changes would

be observed, participants began with similar, chance-level per-

formance in all four tasks (task 1: M = 0.42; task 2: M = 0.54;

task 3: M = 0.54; task 4: M = 0.46; none of these values were

significantly different either from one another or from chance;

Figures 1B and S1). We next tested the hypothesis that partici-

pants would learn more quickly as they progressed from task

to task. To this end, we computed bootstrapped estimates of
the learning curve for each task (see the Supplemental Experi-

mental Procedures) and then assessed the extent to which the

rate of learning was increasing from task to task. Consistent

with our hypothesis, we found that participants did indeed learn

to categorize more quickly as they moved from task to task (e.g.,

the slope of the average best fitting line to the learning rates

across tasks was significantly above zero, indicating faster

learning from task to task: b = 0.026, p < 0.001; see Figures

1B, S1, and S2 and the Supplemental Experimental Procedures

for additional quantification). These results thus strongly indicate

that properly sequenced training on tasks containing shared

higher-order structure can induce generalization in the form of

learning rate, in the absence of any immediate changes in

performance.

Experiment 2: Generalization as a Change in Learning
Rate in Perceptual Learning
Given the results described above, we next applied similar logic

to the domain of perceptual learning. Specifically, we first de-

signed a set of five perceptual learning tasks—visual grating

spatial frequency categorization, color lightness categorization,

dot bisection, Gabor orientation categorization, and dot motion

direction categorization. These tasks shared little in terms of

the base features of the stimuli utilized in the various tasks

(e.g., the stimuli included visual gratings of various spatial fre-

quencies, square color patches of various lightness, three

roughly vertically arranged dots, visual Gabors of various orien-

tations, and fields of dots moving in various average directions;

some stimuli were presented centrally, and some stimuli were

presented peripherally at different spatial positions depending

on the task; see the Supplemental Experimental Procedures).

Note that the particular base features were chosen partially

because they are dimensions along which learning specificity

has been commonly observed in the perceptual learning litera-

ture (i.e., there are many examples of learning that failed to

generalize across position, spatial frequency, orientation, motion

direction, etc.; for a review, see [27]).

Despite the lack of similarity at the level of exact stimuli, the

tasks in experiment 2 nonetheless shared a great deal of

higher-level structure. For instance, the base timing structure,

including a 150-ms stimulus presentation followed by a 500-

ms mask, was shared across all tasks. Other higher-level as-

pects that were shared across tasks included the fact that stimuli

were always drawn from a uniform distribution and that the cate-

gory boundary was always found in the center of that uniform

distribution. As was true in experiment 1, the shared structure

across tasks thus provided no information regarding the exact

choice that should be made on the first trial of a new task (e.g.,

none of the shared structure indicated whether an observed

Gabor was clockwise or counterclockwise relative to a given

reference angle). However, the shared structure could, for

instance, provide information that would allow the participants

to more quickly learn to separate signal from noise (and thus

improve performance more quickly overall).

Thirteen participants were trained sequentially on the five

different perceptual learning tasks (first four tasks: 800 trials

per day, 2 days each; fifth task: 500 trials on a single day). Mean-

while, a second cohort of ten participants underwent only the

final task (note that we refer to the comparison between these
Current Biology 27, 840–846, March 20, 2017 841



Figure 2. ‘‘Learning to Learn’’ without ‘‘Transfer’’ in Perceptual

Learning

Although both the multiple-task trained and untrained participants started with

identical initial levels of performance on the dotmotion direction categorization

task, the trained individuals (i.e., those participants who had previously un-

dergone perceptual learning on four tasks with similar high-level structure)

learned much faster (see Figure S4 for fitting method comparison and indi-

vidual-level data, Figure S3 for the first/fourth comparison, and Table S1 for

details on the second and third trained tasks). Error bands represent 95%

confidence intervals.
two groups as the ‘‘multiple-task trained/untrained compari-

son’’). This setup allowed us to then directly assess whether

the multiple-task trained participants showed differences in

either initial performance or learning rate on the final perceptual

learning task as compared to the untrained participants. Further-

more, in order to allow for additional, within-participant tests of

our hypotheses, six of the multiple-task trained participants

performed the first four perceptual learning tasks in one order,

while the remaining seven performed the same tasks in the

reverse order (see the Supplemental Experimental Procedures).

By combining performance (via Z scoring) across the partici-

pants’ respective first training tasks (six participants: spatial fre-

quency; seven participants: orientation) and the participants’

respective fourth training tasks (vice versa), we could make a

similar set of comparisons as in the multiple-task trained/un-

trained case but within participants rather than between partici-

pants (we refer to this as the ‘‘first/fourth comparison’’ below).

For each participant and task, the data were fit via a time-

evolving logistic function that has previously been used by our

group to examine learning in the perceptual domain [7, 8]. Criti-

cally, unlike standard fitting techniques that aggregate over large

blocks of trials, our statistical approach allows for an estimate

both of immediate changes in performance (making use of the

estimated threshold on the first trial of each new task) and of

changes in learning rate (making use of the rate at which the psy-

chometric function changes over time). Our prediction was that

for both the multiple-task trained/untrained and first/fourth com-

parisons, we would see no differences in first-trial performance

but that we would see significant differences in learning rate.

As can be seen in Figure 2 (see also Figure S3), both hypoth-

eses were confirmed. No significant difference in first-trial per-

formance was seen in either the multiple-task trained/untrained
842 Current Biology 27, 840–846, March 20, 2017
comparison (untrained: threshold = 17.55 ± 1.88; multiple-task

trained: threshold = 26.71 ± 8.61; t(13.1) = 1.04, p = 0.32) or

the first task/fourth task comparison (first task: Z-scored

threshold = 1.36 ± 0.38; fourth task: Z-scored threshold =

0.85 ± 0.25; t(12) = 0.99, p = 0.34). There was, however, a clear

difference in the rate at which participants learned in both the

multiple-task trained/untrained comparison (rate of change for

the psychometric function: for untrained, 5.29 3 10�5 ± 1.60 3

10�5; for multiple-task trained, 4.85 3 10�4 ± 6.06 3 10�5;

t(13.7) = 6.9; p < 0.001; see the Supplemental Experimental Pro-

cedures) and the first/fourth comparison (z-scored rate of

change for the psychometric functions: for first tasks, �0.59 ±

0.13; for fourth tasks, 0.59 ± 0.24; t(12) = 5.7, p < 0.001). There-

fore, as was true in experiment 1, the data clearly indicate that

sequential training on multiple perceptual learning tasks that

share higher-order structure can induce changes in learning

rate in the absence of any immediate changes in performance.

Experiment 3: Assessing the Role of Training Variety
Two key questions are raised by the results of experiment 2. The

first question is whether the results were dependent upon a

training regimen that included multiple tasks or whether the

same effect would be induced by training on a single task for

the same total amount of time. Many theoretical frameworks

[15, 28], suggest a critical role for variety of experience, as

encountering the same higher-level structure in multiple different

tasks/contexts is a cue that the structure is indeed more broadly

applicable. However, it is certainly possible that experience with

the same statistical structure in a single exemplar task would be

equivalently valuable.

The second question is whether the observed enhancement

in the learning of new tasks is indeed dependent upon shared

statistical structure. The results of experiment 2 clearly show

that after learning a number of tasks that share the same struc-

ture, participants are able to learn a new task that shares that

same learned structure more quickly. However, an additional

explicit prediction from our framework is that if this learned struc-

ture is violated in a new task, then performance should suffer

(i.e., would be worse than if participants hadn’t completed any

previous learning tasks).

To address these issues, we again trained nine new partici-

pants sequentially on five different perceptual learning tasks.

Unlike in experiment 2, though, these participants began by

completing a total of 6,400 trials of the initial orientation training

task (800 trials per day, 8 days; i.e., the same number of total tri-

als/days as for the first four training tasks in experiment 2; as

such, this group is referred to as a the ‘‘single-task trained

group’’; see the Supplemental Experimental Procedures). The

participants then completed 800 trials of the same motion task

as in experiment 2. Comparing the first 500 trials of motion

task performance of the participants in experiment 3 with those

in experiment 2 thus offers a clear assessment of the role of va-

riety in the ‘‘learning to learn’’ effect (i.e., both groups would have

completed 6,400 trials of perceptual learning prior to completing

the motion learning task— experiment 2 participants having

done so across four tasks and experiment 3 participants having

done so across a single task). After the motion task, participants

completed the same basic color lightness categorization and dot

bisection tasks from experiment 2. This was done in order to



Figure 3. Assessing the Role of Training Variety and Violations of
Task Structure

(A) The performance of the single-task trained group in experiment 3 on the

motion learning taskwas intermediate to both of the groups from experiment 2.

Learning was significantly faster than that of the untrained group but slower

than that of the multiple-task trained group. Error bands represent 95% con-

fidence intervals.

(B) The violations of the learned-task structure in the spatial frequency learning

task resulted in poorer initial performance in the trained group of experiment 3

when compared to the untrained group. However, there was a trend for the

learning rate to still be faster in the trained group than in the untrained group.

This would be consistent with the fact that, while one aspect of the training was

violated in the spatial frequency task (i.e., the exact temporal order/structure),

many other aspects remained shared (e.g., the fact that some aspects of the

presentation were stimuli, whereas some were noise; the fact that the stimulus

was quickly presented; the fact that the stimuli differed along a single

continuous dimension with the category boundary lying in the center of the

uniform distribution; etc.). Error bands represent 95% confidence intervals.
ensure that the trained participants in experiment 3 experienced

the higher-level task structure with the same amount of variety as

the participants in experiment 2 before completing a final task

aimed at addressing the second key question above (i.e.,

whether the enhanced learning was dependent upon new tasks

that share the same structure as learned tasks). To this end, as a

final task, participants completed a new version of the spatial fre-

quency task that was redesigned from the experiment 2 version

to violate one major aspect of the previous training. Specifically,

in this new version, the random 500-ms mask came before the
stimulus, rather than after. If one key piece of information taught

by the preceding training tasks was the temporal relationship be-

tween stimulus (target) and noise (mask), this final task would

be expected to be more difficult for the participants who had un-

dergone the training than for another new group of participants

(n = 9), who only performed the spatial frequency task.

Answering the question of the role of variety, the learning

rate parameters in the motion learning task were significantly

different between the single-task trained group from experiment

3 and both the untrained group from experiment 2 and the mul-

tiple-task trained group from experiment 2 (Figure 3A). Specif-

ically, the single-task trained group learned significantly more

quickly than the untrained group (for the single-task trained

group, 1.59 3 10�4 ± 1.62 3 10�5; for the untrained group,

5.29 3 10�5 ± 1.60 3 10�5; t(16.9) = 4.66; p < 0.001) but

significantly more slowly than the multiple-task trained group

(for the multiple-task trained group, 4.85 3 10�4 ± 6.06 3

10�5; t(13.7) = 5.2, p < 0.001).

For the question of the effect of violated task structure, as ex-

pected, repeated training on tasks with similar statistics led

to a decreased initial performance when these statistics were

violated (Figure 3B). Single-task trained participants had signifi-

cantly higher initial spatial frequency thresholds than partici-

pants who had not completed any training (we use the label ‘‘sin-

gle-task trained’’ in order to differentiate the trained group in

experiment 3 from the trained group in experiment 2; however,

note again that the single-task trained group had in fact been

trained on four separate tasks before they were trained on the

spatial frequency task: for single-task trained, 1.18 ± 0 0.089;

for untrained, 0.86 ± 0 0.074; t(16.1) = 2.8; p = 0.012). As shown

in Figure 3B, this difference in initial threshold was accompanied

by a non-significantly faster learning rate for single-task trained

versus untrained participants (for single-task trained, 1.21 3

10�3 ± 4.03 3 10�4; for untrained, 3.74 3 10�4 ± 2.46 3 10�4;

t(13.4) = 1.8, p = 0.098).

While the results of both questions are broadly consistent with

the expectations of the our theoretical framework, caution is war-

ranted when attempting to interpret the exact changes that gave

rise to the final learning taskperformance. For instance, one inter-

pretation of themotion learning taskdata in experiment 3 involves

only changes in a positive direction—that is, that the single-task

training led to some learning of the shared structure, but it was

of a lesser degree than the learning induced by the multiple-

task training. An alternative interpretation, though, would involve

changes in both a positive direction (some learning of the shared

structure) and a negative direction (i.e., stronger learning of the

non-shared task structure, such as the spatial locations that

attention should be guided toward). Similarly, while initial perfor-

mance on the spatial frequency learning task in experiment 3was

worse for trained than for untrained participants (consistent with

violated expectations), there was nonetheless a strong trend to-

ward faster learning (that would be consistent with the fact that,

although one task aspect was violated in the spatial frequency

task—i.e., the exact timing—many other task aspects were still

shared—e.g., the fact that critical information was briefly pre-

sented, that some of the presentation was pure noise, etc.).

This is particularly critical, as it is unclear that ‘‘unlearning’’ previ-

ously learned information should follow the same temporal dy-

namics (but in an opposite direction) as the initial learning [29].
Current Biology 27, 840–846, March 20, 2017 843



Figure 4. Inferences about Generalization that Would Have Been

Drawn via More Standard Techniques

Although the data analysis technique we employed in experiments 2 and 3

specificallymodels changes in performance as a continuous function of time, it

is considerably more standard in the literature to fit data as a single block.

However, if this block is too small (left bars), no difference between groupsmay

be detected (i.e., differences that would have been present due to ‘‘learning to

learn’’ would be missed). Conversely, if this block is too large (right bars),

generalization will be detected, but it will be wrongly identified as ‘‘transfer’’

rather than ‘‘learning to learn’’ (i.e., without modeling performance as a func-

tion of time, there is no way to determine whether the observed differences

were present immediately or evolved through time). See also Figure S4 for a

comparison of fitting methods. Error bars represent 95% confidence intervals.
DISCUSSION

The results of the present investigation clearly demonstrate that

properly designed sequential training can induce perceptual

learning generalization that manifests as a change in learning

rate, in the absence of any immediate changes in performance.

This is consistent with the broad idea that learning higher-

level structure can, in turn, facilitate learning the individual pa-

rameters of new tasks, thus inducing what has been called, in

various parts of the literature, ‘‘learning to learn’’ [14–17, 20,

28, 30–33]. Critically, this is not a simple matter of directly

applying some known information to a new task (either immedi-

ately or delayed through time), which is commonly referred to as

‘‘transfer’’ of learning. Indeed, in our case here, the higher-level

structure that exists across tasks (e.g., the consistent timing

information) provides no information that would directly inform

actions in each new task (i.e., the timing information provides

no information regarding what separates ‘‘high’’ from ‘‘low’’

spatial frequency responses).

In order to explore this distinction further, significant method-

ological changes may be necessary for the perceptual learning

field going forward. For instance, one of the more common de-

signs used to examine perceptual learning generalization in-

volves training on some perceptual learning task ‘‘A’’ followed

by a single block of some generalization task ‘‘B.’’ Unfortunately,

this type of design may result in the ‘‘learning to learn’’ form of

generalization being missed entirely, or else it may result in the
844 Current Biology 27, 840–846, March 20, 2017
‘‘learning to learn’’ form of generalization beingmislabeled as im-

mediate transfer (depending on the number of trials used and the

rate at which the task is learned). To make this issue explicit, we

assessed the inferences that would have arisen had we utilized

more typical methodological and statistical approaches in

experiment 2. In the first case, we fit the data for the first 50 trials

of the generalization tasks (mimicking a very short generalization

task), while in the second case, we fit the data over the first 400

trials of the generalization tasks (in both cases, the data were

also fit in a more conventional fashion—i.e., aggregating over

the entire block of trials rather than explicitly modeling perfor-

mance changes as a function of time—to demonstrate that any

outcomes were not specific to the analysis technique).

As can be seen in Figures 4 and S4, when examining just the

first 50 trials of data for the generalization task, no significant dif-

ferences were observed (threshold over first 50 trials: multiple-

task trained/untrained comparison—for untrained, 20.12 ±

4.07; for multiple-task trained, 17.52 ± 2.80; t(16.71) = 0.52,

p = 0.61; note that a similar outcome is seen in the first/fourth

comparison: for first tasks, �0.14 ± 0.20; for fourth tasks,

0.14 ± 0.33; t(12) = 0.70, p = 0.49). In other words, this approach

would have led to the correct conclusion that no ‘‘transfer’’ was

present, but due to the small number of trials involved, it would

have resulted in a failure to detect the presence of ‘‘learning to

learn’’ (i.e., there would not have been sufficient time for the

groups to split apart). Conversely, when examining the first 400

trials as a single block, significant differences were observed

for both the trained/untrained and first/fourth comparisons

(threshold over first 400 trials: trained/untrained comparison—

for untrained, 15.59 ± 1.08; for multiple-task trained, 8.92 ±

0.57; t(13.9) = 5.47, p < 0.001; first/fourth comparison—for first

tasks, 0.42 ± 0.29; for fourth tasks, �0.42 ± 0.19; t(12) = 2.90,

p = 0.01). In essence, by aggregating performance over a large

number of trials, one would correctly infer that learning general-

ization was present but would erroneously conclude that this

reflects ‘‘transfer’’ rather than differences in learning rate (i.e.,

without modeling performance across time, there is no way to

differentiate an immediate difference in performance from a

rapid splitting apart of performance). This latter issue might be

compounded by the use of staircase procedures to estimate

thresholds (a common procedure in the field), because the single

data point that arises from a staircase procedure is the result of

tens, if not hundreds, of trials. Finally, while it is common to utilize

some number of practice trials prior to the actual generalization

task, this too may result in issues with correctly identifying the

form of generalization that is present, as the practice trials could

provide an opportunity for two groups to begin splitting apart (in

which case, group differences may then be observed as early as

the first few trials of the actual generalization task).

We note, though, that although this framework makes a clear

prediction that learning multiple tasks with shared task structure

should increase learning rate on new tasks that share the same

structure, the predictions regarding first-trial performance are

much more task dependent. The training tasks in the experi-

ments above were designed in order to minimize the extent to

which the shared structure should inform first-trial performance,

but this need not be the case. In situations where, for instance,

participants bring some knowledge about the new task dimen-

sions, one might expect to see both better initial performance



and faster learning (i.e., if there is a match between both the

higher-level structure and some number of the task-level param-

eters). The types of methodological changes suggested above

could thus pave the way toward further addressing what is

always the key question for the field—namely, ‘‘what’’ is being

learned from training on a given task. The evidence provided

here strongly indicates that considering performance on new un-

trained tasks, both in terms of immediate performance and in

terms of learning rate, can serve to differentiate and identify

what has been learned via training in a way not provided for by

previous methods (e.g., in both ‘‘transfer’’ and ‘‘learning to

learn,’’ one is applying previous experience to new tasks, but

in the former case, that knowledge is directly applicable to the

new task and thus benefits appear immediately, while in the

latter case, the knowledge can only serve to shape learning of

the new task).

The current data may also suggest the need to further explore

a number of other previous results, both within and beyond the

domain of perceptual training. For instance, there is a great

deal of research on the impact that various complex forms of

experience have on perceptual and cognitive skills (e.g., cogni-

tive training, ‘‘brain training,’’ etc. [34–37]). As has generally

been true of the standard perceptual learning literature, work in

these fields has focused exclusively on the ‘‘transfer’’ form of

generalization without necessarily utilizing methods that could

differentiate ‘‘transfer’’ from ‘‘learning to learn.’’ It is thus possible

that ‘‘learning to learn’’ has, at times, been misidentified as

‘‘transfer’’ (in the case of positive results) and/or that the

‘‘learning to learn’’ form of generalization was not detected (in

the case of non-significant generalization results). The same is

also potentially true of work on more complex training regimens

within the perceptual learning domain, such as the nicely elabo-

rated ‘‘rules-based learning’’ framework [6]. Here, depending on

the ‘‘rule’’ that is learned, one might expect either immediate

‘‘transfer’’—as, for instance, would be predicted if the rule

were essentially a template for the to-be-identified target—or

‘‘learning to learn’’—as would be predicted if the rule was, for

instance, more broadly about how to best separate targets

from noise. And if rules at various levels of abstraction are

learned [38–40], this could result in both some degree of imme-

diate ‘‘transfer’’ and some degree of ‘‘learning to learn’’ (or,

indeed, one could imagine a situation where one must learn

some task statistics before knowing which of several possible

rules to adopt). Examining these issues further, though, will

require the types of methodological designs and statistical ana-

lyses highlighted here that can separate these distinct forms of

generalization.
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