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Introduction

A longstanding issue across both science and instruction has been to understand how

various aspects of an educational curriculum or training program influence learning acquisition

and generalization. One such aspect, which has received a great deal of research attention, is

the variability of examples experienced during training (Raviv et al., 2022). The influence of

training variation has been studied in numerous domains, including category learning (Cohen

et al., 2001; Posner & Keele, 1968), visuomotor learning (Berniker et al., 2014; Schmidt, 1975),

language learning (Perry et al., 2010), and education (Braithwaite & Goldstone, 2015; Guo et al.,

2014). The pattern of results is complex, with numerous studies finding both beneficial (Braun

et al., 2009; Catalano & Kleiner, 1984; Gorman & Goldstone, 2022; Roller et al., 2001), as well

as null or negative effects (Brekelmans et al., 2022; Hu & Nosofsky, 2024; Van Rossum, 1990).

The present study seeks to contribute to the large body of existing research by examining the

influence of variability in visuomotor function learning - a domain in which it has been relatively

under-studied.

Function Learning and Extrapolation

The study of human function learning investigates how people learn relationships be-

tween continuous input and output values. Function learning is studied both in tasks where

individuals are exposed to a sequence of input/output pairs (DeLosh et al., 1997; McDaniel et al.,
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2013), or situations where observers are presented with an incomplete scatterplot or line graph

and make predictions about regions of the plot that do not contain data (Ciccione & Dehaene,

2021; Courrieu, 2012; Said & Fischer, 2021; Schulz et al., 2020). Studies of function learning often

compare the difficulty of learning functions of different underlying forms (e.g. linear, bi-linear,

power, sinusoidal), and the extent to which participants can accurately respond to novel inputs

that fall in-between previously experienced inputs (interpolation testing), or that fall outside the

range of previously experienced inputs (extrapolation).

Carroll (1963) conducted the earliest work on function learning. Input stimuli and out-

put responses were both lines of varying length. The correct output response was related to the

length of the input line by a linear, quadratic, or random function. Participants in the linear and

quadratic performed above chance levels during extrapolation testing, with those in the linear

condition performing the best overall. Carroll argued that these results were best explained by

a rule-based model wherein learners form an abstract representation of the underlying function.

Subsequent work by Brehmer (1974), testing a wider array of functional forms, provided further

evidence for superior extrapolation in tasks with linear functions. Brehmer argued that individu-

als start out assuming a linear function, but given sufficient error will progressively test alterna-

tive hypotheses with polynomials of greater degree. Koh & Meyer (1991) employed a visuomotor

function learning task, wherein participants were trained on examples from an unknown function

relating the length of an input line to the duration of a response (time between keystrokes). In

this domain, participants performed best when the relation between line length and response du-

ration was determined by a power law, as opposed to linear function. Koh and Meyer developed

the log-polynomial adaptive-regression model to account for their results.
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The first significant challenge to rule-based accounts of function learning was put forth

by DeLosh et al. (1997) . In their task, participants learned to associate stimulus magnitudes with

response magnitudes that were related via either linear, exponential, or quadratic function. Par-

ticipants approached ceiling performance by the end of training in each function condition, and

were able to accurately respond on interpolation testing trials. All three conditions demonstrated

some capacity for extrapolation, however participants in the linear condition tended to underes-

timate the true function, while exponential and quadratic participants reliably overestimated the

true function on extrapolation trials. Extrapolation and interpolation performances are depicted

in Figure 1.

The authors evaluated the rule-based models introduced in earlier research (with

some modifications enabling trial-by-trial learning). The polynomial hypothesis testing model

(Brehmer, 1974; Carroll, 1963) tended to mimic the true function closely in extrapolation, and

thus offered a poor account of the under and over-estimation biases shown in the human data.

The log-polynomial adaptive regression model (Koh & Meyer, 1991) was able to mimic some of

the systematic deviations produced by human subjects, but also predicted overestimation in

cases where underestimation occurred.

The authors also introduced two new function-learning models. The Associative Learning

Model (ALM) and the extrapolation-association model (EXAM). ALM is a two layer connectionist

model adapted from the ALCOVE model in the category learning literature (Kruschke, 1992).

ALM belongs to the general class of radial-basis function neural networks, and can be considered

a similarity-basedmodel in the sense that the nodes in the input layer of the network are activated

as a function of distance (see Figure 17). The EXAM model retains the same similarity-based

activation and associative learningmechanisms as ALM,while being augmentedwith a linear rule
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response mechanism. When presented with novel stimuli, EXAM will retrieve the most similar

input-output examples encountered during training, and from those examples compute a local

slope. ALMwas able to provide a good account of participants’ training and interpolation data in

all three function conditions, however it was unable to extrapolate. EXAM, by contrast, was able

to reproduce both the extrapolation underestimation, as well as the quadratic and exponential

overestimation patterns exhibited by the human participants. Subsequent research identified

some limitations in EXAM’s ability to account for cases where human participants learn and

extrapolate a sinusoidal function (Bott & Heit, 2004) or to scenarios where different functions

apply to different regions of the input space (Kalish et al., 2004), though EXAM has been shown

to provide a good account of human learning and extrapolation in tasks with bi-linear, V-shaped

input spaces (McDaniel et al., 2009).
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Figure 1: The generalization patterns of human particpiants observed in DeLosh et al. (1997) (re-
produced from Figure 3 in their manuscript). Dots represent the average responses of human
participants, and solid lines represent the true functions. The dashed vertical lines indicate the
lower and upper bounds of the trained examples. Stimulii that fall within the dashed lines are
interpolations of the training examples, while those that fall outside the dashed lines are extrap-
olations.
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Variability and Function Learning

The influence of variability on function learning tasks has received relatively little at-

tention. The study by DeLosh et al. (1997) (described in detail above) did include a variability

manipulation (referred to as density in their paper), wherein participants were trained with ei-

ther 8, 20, or 50 unique input-output pairs, with the total number of training trials held constant.

They found aminimal influence of variability on training performance, and no difference between

groups in interpolation or extrapolation, with all three variability conditions displaying accurate

interpolation, and linearly biased extrapolation that was well accounted for by the EXAM model.

In the domain of visuomotor learning, van Dam & Ernst (2015) employed a task which

required participants to learn a linear function between the spikiness of shape stimuli and the

correct horizontal position to make a rapid pointing response. The shapes ranged from very

spiky to completely circular at the extreme ends of the space. Participants trained with interme-

diate shapes having lower variation (2 shapes) or higher variation (5 shapes) condition, with the 2

items of the lower variation condition matching the items used on the extreme ends of the higher

variation training space. Learning was significantly slower in the higher variation group. How-

ever, the two conditions did not differ when tested with novel shapes, with both groups producing

extrapolation responses of comparable magnitude to the most similar training item, rather than

in accordance with the true linear function. The authors accounted for both learning and extrap-

olation performance with a Bayesian learning model. Similar to ALM, the model assumes that

generalization occurs as a Gaussian function of the distance between stimuli. However, unlike

ALM, the Bayesian learning model utilizes more elaborate probabilistic stimulus representations,

with a separate Kalman Filter for each shape stimulus.
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Overview Of Present Study

The present study investigates the influence of training variability on learning, general-

ization, and extrapolation in a uni-dimensional visuomotor function learning task. To the best of

our knowledge, this research is the first to employ the classic constant vs. varied training manip-

ulation, commonly used in the literature studying the benefits of variability, in the context of a

uni-dimensional function learning task. Across three experiments, we compare constant and var-

ied training conditions in terms of learning performance, extrapolation accuracy, and the ability

to reliably discriminate between stimuli.

To account for the empirical results, we will apply a series of computational models,

including the Associative Learning Model (ALM) and the Extrapolation-Association Model

(EXAM). Notably, this study is the first to employ approximate Bayesian computation (ABC) to

fit these models to individual subject data, enabling us to thoroughly investigate the full range

of posterior predictions of each model, and to examine the ability of these influential models of

function learning to account for both the group level and individual level data.

Experiment 1

Methods

Participants A total of 156 participants were recruited from Indiana University Introduc-

tory Psychology Courses. Participants were randomly assigned to one of two training conditions:

varied training or constant training.

Task. The “Hit The Wall” (HTW) visuomotor extrapolation task task was programmed in

JavaScript, making use of the phaser.io game library. The HTW task involved launching a projec-

https://phaser.io/
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tile such that it would strike the “wall” at the target speed indicated at the top of the screen (see

Figure 2). The target velocities were given as a range, or band, of acceptable velocity values (e.g.,

band 800-1000). During the training stage, participants received feedback indicating whether

they had hit the wall within the target velocity band, or how many units their throw was above

or below the target band. Participants were instructed that only the x velocity component of the

ball was relevant to the task. The y velocity, or the location at which the ball struck the wall, had

no influence on the task feedback.

Figure 2: The Hit the wall task. Participants launch the blue ball to hit the red wall at the target
velocity band indicated at the top of the screen. The ball must be released from within the orange
square - but the location of release, and the location at which the ball strikes the wall are both
irrelevant to the task feedback.

Procedure. All participants completed the task online. Participants were provided with a

description of the experiment and indicated informed consent. Figure 3 illustrates the general pro-
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cedure. Participants completed a total of 90 trials during the training stage. In the varied training

condition, participants encountered three velocity bands (800-1000, 1000-1200, and 1200-1400).

Participants in the constant training condition trained on only one velocity band (800-1000) - the

closest band to what would be the novel extrapolation bands in the testing stage.

Following the training stage, participants proceeded immediately to the testing stage. Par-

ticipants were tested from all six velocity bands, in two separate stages. In the novel extrapolation

testing stage, participants completed “no-feedback” testing from three novel extrapolation bands

(100-300, 350-550, and 600-800), with each band consisting of 15 trials. Participants were also

tested from the three velocity bands that were trained by the varied condition (800-1000, 1000-

1200, and 1200-1400). In the constant training condition, two of these bands were novel, while

in the varied training condition, all three bands were encountered during training. The order

in which participants completed the novel-extrapolation and testing-from-3-varied bands was

counterbalanced across participants. A final training stage presented participants with “feed-

back” testing for each of the three extrapolation bands (100-300, 350-550, and 600-800).

Figure 3: Experiment 1 Design. Constant and Varied participants complete different training
conditions.
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Analyses Strategy

All data processing and statistical analyses were performed in R version 4.32 (Team, 2020).

To assess differences between groups, we used Bayesian Mixed Effects Regression. Model fitting

was performed with the brms package in R (Bürkner, 2017), and descriptive stats and tables were

extracted with the BayestestR package (Makowski et al., 2019). Mixed effects regression enables

us to take advantage of partial pooling, simultaneously estimating parameters at the individual

and group level. Our use of Bayesian, rather than frequentist methods allows us to directly quan-

tify the uncertainty in our parameter estimates, as well as avoid convergence issues common to

the frequentist analogues of our mixed models.

Each model was set to run with 4 chains, 5000 iterations per chain, with the first 2500 dis-

carded as warmup chains. Rhat values were within an acceptable range, with values <=1.02 (see

appendix for diagnostic plots). We used uninformative priors for the fixed effects of the model

(condition and velocity band), and weakly informative Student T distributions for the random

effects. For each model, we report 1) the mean values of the posterior distribution for the param-

eters of interest, 2) the lower and upper credible intervals (CrI), and the probability of direction

value (pd).

Table 1: Statistical Model Specifications. The specifications for the Bayesian regression models
used in the analyses of each of the 3 experiments. Comparisons of accuracy use absolute deviation
as the dependent variable, while comparisons of discrimination use the raw velocities produced
by participants as the dependent variable.

Group Comparison Code Data

End of Training

Accuracy

brm(Abs. Deviation ~ condit) Final Training Block
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Group Comparison Code Data

Test Accuracy brm(Abs. Deviation ~ condit * bandType

+ (1|id) + (1|bandInt)

All Testing trials

Band Discrimination brm(vx ~ condit * band +(1 +

bandInt|id)

All Testing Trials

In each experiment we compare varied and constant conditions in terms of 1) accuracy in

the final training block; 2) testing accuracy as a function of band type (trained vs. extrapolation

bands); 3) extent of discrimination between all six testing bands. We quantified accuracy as the

absolute deviation between the response velocity and the nearest boundary of the target band.

Thus, when the target band was velocity 600-800, throws of 400, 650, and 900 would result in

deviation values of 200, 0, and 100, respectively. The degree of discrimination between bands

was measured by fitting a linear model predicting the response velocity as a function of the

target velocity. Participants who reliably discriminated between velocity bands tended to have

slope values ~1, while participants whomade throws irrespective of the current target bandwould

have slopes ~0.

Results



IMPACT OF TRAINING VARIABILITY ON VISUOMOTOR FUNCTION LEARNING AND
EXTRAPOLATION 12

800−1000 1000−1200 1200−1400

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
100

200

300

Training Block

D
ev

ia
tio

n

Constant Varied

Figure 4: Experiment 1 - Training Stage. Deviations from target band across training blocks.
Lower values represent greater accuracy.

Table 2: Experiment 1 - End of training performance. Comparing final training block accuracy in
the band common to both groups. The Intercept represents the average of the baseline condition
(constant training), and the conditVaried coefficient reflects the difference between the constant
and varied groups. A larger positive estimates indicates a greater deviation (lower accuracy) for
the varied group. CrI values indicate 95% credible intervals. pd is the probability of direction (the
% of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 106.34 95.46 117.25 1

conditVaried 79.64 57.92 101.63 1

Training. Figure 4 displays the average deviations across training blocks for the varied

group, which trained on three velocity bands, and the constant group, which trained on one ve-
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locity band. To compare the training conditions at the end of training, we analyzed performance

on the 800-1000 velocity band, which both groups trained on. The full model results are shown

in Table 1. The varied group had a significantly greater deviation from the target band than the

constant group in the final training block, (𝛽 = 79.64, 95% CrI [57.92, 101.63]; pd = 100%).

Table 3: Experiment 1 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation bands), and the interaction between the two factors. The Intercept represents the
baseline condition (constant training & trained bands). Larger coefficients indicate larger devi-
ations from the baselines - and a positive interaction coefficient indicates disproporionate de-
viation for the varied condition on the extrapolation bands. CrI values indicate 95% credible
intervals. pd is the probability of direction (the % of the posterior on the same side of 0 as the
coefficient estimate).

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 152.55 70.63 229.85 1.0

conditVaried 39.00 -21.10 100.81 0.9

bandTypeExtrapolation 71.51 33.24 109.60 1.0

conditVaried:bandTypeExtrapolation 66.46 32.76 99.36 1.0

Testing. To compare accuracy between groups in the testing stage, we fit a Bayesianmixed

effects model predicting deviation from the target band as a function of training condition (varied

vs. constant) and band type (trained vs. extrapolation), with random intercepts for participants

and bands. The model results are shown in Table 3. The main effect of training condition was

not significant (𝛽 = 39, 95% CrI [-21.1, 100.81]; pd = 89.93%). The extrapolation testing items

had a significantly greater deviation than the training bands (𝛽 = 71.51, 95% CrI [33.24, 109.6];

pd = 99.99%). Most importantly, the interaction between training condition and band type was

significant (𝛽 = 66.46, 95% CrI [32.76, 99.36]; pd = 99.99%), As shown in Figure 5, the varied group
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had disproportionately larger deviations compared to the constant group in the extrapolation

bands.
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Figure 5: Experiment 1 Testing Accuracy. A) Empirical Deviations from target band during testing
without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing band
type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent 95%
credible intervals.
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Table 4: Experiment 1 Testing Discrimination. Bayesian Mixed Model Predicting velocity as a
function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the Band
term reflect a larger slope, or greater sensitivity/discrimination. The interaction between condit
and Band indicates the difference between constant and varied slopes. CrI values indicate 95%
credible intervals. pd is the probability of direction (the % of the posterior on the same side of 0
as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 408.55 327.00 490.61 1.00

conditVaried 164.05 45.50 278.85 1.00

Band 0.71 0.62 0.80 1.00

condit*Band -0.14 -0.26 -0.01 0.98

Finally, to assess the ability of both conditions to discriminate between velocity bands, we

fit a model predicting velocity as a function of training condition and velocity band, with random

intercepts and random slopes for each participant. See Table 4 for the full model results. The

estimated coefficient for training condition (𝛽 = 164.05, 95%CrI [45.5, 278.85], pd = 99.61%) suggests

that the varied group tends to produce harder throws than the constant group, though this is not,

in and of itself, useful for assessing discrimination. Most relevant to the issue of discrimination is

the coefficient on the Band predictor (𝛽 = 0.71 95%CrI [0.62, 0.8], pd = 100%). Although themedian

slope does fall underneath the ideal of value of 1, the fact that the 95% credible interval does

not contain 0 provides strong evidence that participants exhibited some discrimination between

bands. The significant negative estimate for the interaction between slope and condition (𝛽 =

-0.14, 95% CrI [-0.26, -0.01], pd = 98.39%), indicates that the discrimination was modulated by
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training condition, with the varied participants showing less sensitivity between bands than the

constant condition (see Figure 6 and Figure 7).
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Figure 6: Experiment 1. Empirical distribution of velocities produced in the testing stage. Translu-
cent bands with dashed lines indicate the correct range for each velocity band.

Experiment 1 Summary

In Experiment 1, we investigated how variability in training influenced participants’ abil-

ity to learn and extrapolate in a visuomotor task. Our findings that training with variable condi-

tions resulted in lower final training performance are consistent with much of the prior research

on the influence of training variability (Raviv et al., 2022; Soderstrom & Bjork, 2015), and are
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Figure 7: Experiment 1 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well partic-
ipants discriminated between velocity bands. B) The distribution of slope coefficients for each
condition. Larger slopes indicates better discrimination between target bands. C) Individual par-
ticipant slopes. Error bars represent 95% HDI.
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particularly unsurprising in the present work, given that the constant group received three times

the amount of training on the velocity band common to the two conditions.

More importantly, the varied training group exhibited significantly larger deviations from

the target velocity bands during the testing phase, particularly for the extrapolation bands that

were not encountered by either condition during training.

Experiment 2

Methods & Procedure

The task and procedure of Experiment 2 was identical to Experiment 1, with the exception

that the training and testing bands were reversed (see Figure 8). The Varied group trained on

bands 100-300, 350-550, 600-800, and the constant group trained on band 600-800. Both groups

were tested from all six bands. A total of 110 participants completed the experiment (Varied: 55,

Constant: 55).

Figure 8: Experiment 2 Design. Constant and Varied participants complete different training
conditions. The training and testing bands are the reverse of Experiment 1.

Results
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Figure 9: Experiment 2 Training Stage. Deviations from target band across training blocks. Lower
values represent greater accuracy.

Table 5: Experiment 2 - End of training performance. The Intercept represents the average of
the baseline condition (constant training), and the conditVaried coefficient reflects the difference
between the constant and varied groups. A larger positive coefficient indicates a greater devia-
tion (lower accuracy) for the varied group. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 91.01 80.67 101.26 1

conditVaried 36.15 16.35 55.67 1

Training. Figure 9 presents the deviations across training blocks for both constant and

varied training groups. We again compared training performance on the band common to both

groups (600-800). The full model results are shown in Table 1. The varied group had a significantly
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greater deviation than the constant group in the final training block, ( 𝛽 = 36.15, 95% CrI [16.35,

55.67]; pd = 99.95%).

Table 6: Experiment 2 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation), and the interaction between the two factors. The Intercept represents the baseline
condition (constant training & trained bands). Larger coefficients indicate larger deviations from
the baselines - and a positive interaction coefficient indicates disproportionate deviation for the
varied condition on the extrapolation bands. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 190.91 125.03 259.31 1.00

conditVaried -20.58 -72.94 33.08 0.78

bandTypeExtrapolation 38.09 -6.94 83.63 0.95

conditVaried:bandTypeExtrapolation 82.00 41.89 121.31 1.00

Testing Accuracy. The analysis of testing accuracy examined deviations from the target

band as influenced by training condition (Varied vs. Constant) and band type (training vs. extrap-

olation bands). The results, summarized in Table 6, reveal no significant main effect of training

condition (𝛽 = -20.58, 95% CrI [-72.94, 33.08]; pd = 77.81%). However, the interaction between

training condition and band type was significant (𝛽 = 82, 95% CrI [41.89, 121.31]; pd = 100%), with

the varied group showing disproportionately larger deviations compared to the constant group

on the extrapolation bands (see Figure 10).
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Figure 10: Experiment 2 Testing Accuracy. A) Empirical Deviations from target band during test-
ing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent
95% credible intervals.
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Table 7: Experiment 2 Testing Discrimination. Bayesian Mixed Model Predicting velocity as a
function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the Band
term reflect a larger slope, or greater sensitivity/discrimination. The interaction between condi-
tion and Band indicates the difference between constant and varied slopes. CrI values indicate
95% credible intervals. pd is the probability of direction (the % of the posterior on the same side
of 0 as the coefficient estimate)

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 362.64 274.85 450.02 1.00

conditVaried -8.56 -133.97 113.98 0.55

Band 0.71 0.58 0.84 1.00

condit*Band -0.06 -0.24 0.13 0.73

Testing Discrimination. Finally, to assess the ability of both conditions to discriminate be-

tween velocity bands, we fit a model predicting velocity as a function of training condition and

velocity band, with random intercepts and random slopes for each participant. The full model

results are shown in Table 7. The overall slope on target velocity band predictor was significantly

positive, (𝛽 = 0.71, 95% CrI [0.58, 0.84]; pd= 100%), indicating that participants exhibited discrim-

ination between bands. The interaction between slope and condition was not significant, (𝛽 =

-0.06, 95% CrI [-0.24, 0.13]; pd= 72.67%), suggesting that the two conditions did not differ in their

ability to discriminate between bands (see Figure 11 and Figure 12).

Experiment 2 Summary

Experiment 2 extended the findings of Experiment 1 by examining the effects of train-

ing variability on extrapolation performance in a visuomotor function learning task, but with

reversed training and testing bands. Similar to Experiment 1, the Varied group exhibited poorer
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Figure 11: Experiment 2. Empirical distribution of velocities produced in the testing stage.
Translucent bands with dash lines indicate the correct range for each velocity band.
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Figure 12: Experiment 2 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well partic-
ipants discriminated between velocity bands. B) The distribution of slope coefficients for each
condition. Larger slopes indicates better discrimination. C) Individual participant slopes. Error
bars represent 95% HDI.
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performance during training and testing. However unlike experiment 1, the Varied and Constant

groups did not show a significant difference in their discrimination between bands.

Experiment 3

Methods & Procedure

The major adjustment of Experiment 3 is for participants to receive ordinal feedback dur-

ing training, in contrast to the continuous feedback of the prior experiments. After each training

throw, participants are informed whether a throw was too soft, too hard, or correct (i.e. within

the target velocity range). All other aspects of the task and design are identical to Experiments 1

and 2. We utilized the order of training and testing bands from both of the prior experiments, thus

assigning participants to both an order condition (Original or Reverse) and a training condition

(Constant or Varied). Participants were once again recruited from the online Indiana University

Introductory Psychology Course pool. Following exclusions, 195 participants were included in the

final analysis, n=51 in the Constant-Original condition, n=59 in the Constant-Reverse condition,

n=39 in the Varied-Original condition, and n=46 in the Varied-Reverse condition.

Results
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Table 8: Experiment 3 - End of training performance. The Intercept represents the average
of the baseline condition (constant training & original band order), the conditVaried coefficient
reflects the difference between the constant and varied groups, and the bandOrderReverse co-
efficient reflects the difference between original and reverse order. A larger positive coefficient
indicates a greater deviation (lower accuracy) for the varied group. The negative value for the
interaction between condit and bandOrder indicates that varied condition with reverse order had
significantly lower deviations than the varied condition with the original band order

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 121.86 109.24 134.60 1.00

conditVaried 64.93 36.99 90.80 1.00

bandOrderReverse 1.11 -16.02 18.16 0.55

conditVaried:bandOrderReverse -77.02 -114.16 -39.61 1.00

Training. Figure 13 displays the average deviations from the target band across training

blocks, and Table 8 shows the results of the Bayesian regression model predicting the deviation

from the common band at the end of training (600-800 for reversed order, and 800-1000 for

original order conditions). The main effect of training condition is significant, with the varied

condition showing larger deviations ( 𝛽 = 64.93, 95% CrI [36.99, 90.8]; pd = 100%). The main

effect of band order is not significant 𝛽 = 1.11, 95% CrI [-16.02, 18.16]; pd = 55.4%, however the

interaction between training condition and band order is significant, with the varied condition

showing greater accuracy in the reverse order condition ( 𝛽 = -77.02, 95% CrI [-114.16, -39.61]; pd

= 100%).
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Figure 13: Experiment 3 training. Deviations from target band during training, shown separately
for groups trained with the original order (used in E1) and reverse order (used in E2).

Table 9: Experiment 3 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation), and the interaction between the two factors. The Intercept represents the baseline
condition, (constant training, trained bands & original order), and the remaining coefficients
reflect the deviation from that baseline. Positive coefficients thus represent worse performance
relative to the baseline, and a positive interaction coefficient indicates disproportionate deviation
for the varied condition or reverse order condition.

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 288.65 199.45 374.07 1.00

conditVaried -40.19 -104.68 23.13 0.89

bandTypeExtrapolation -23.35 -57.28 10.35 0.92

bandOrderReverse -73.72 -136.69 -11.07 0.99

conditVaried:bandTypeExtrapolation 52.66 14.16 90.23 1.00

conditVaried:bandOrderReverse -37.48 -123.28 49.37 0.80
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Term Estimate

95% CrI

Lower

95% CrI

Upper pd

bandTypeExtrapolation:bandOrderReverse 80.69 30.01 130.93 1.00

conditVaried:bandTypeExtrapolation:bandOrder 30.42 -21.00 81.65 0.87

Testing Accuracy. Table 9 presents the results of the Bayesian mixed effects model pre-

dicting absolute deviation from the target band during the testing stage. There was no significant

main effect of training condition,𝛽 = -40.19, 95% CrI [-104.68, 23.13]; pd = 89.31%, or band type,𝛽

= -23.35, 95% CrI [-57.28, 10.35]; pd = 91.52%. However the effect of band order was significant,

with the reverse order condition showing lower deviations, 𝛽 = -73.72, 95% CrI [-136.69, -11.07];

pd = 98.89%. The interaction between training condition and band type was also significant 𝛽

= 52.66, 95% CrI [14.16, 90.23]; pd = 99.59%, with the varied condition showing disproprionately

large deviations on the extrapolation bands compared to the constant group. There was also a

significant interaction between band type and band order, 𝛽 = 80.69, 95% CrI [30.01, 130.93]; pd

= 99.89%, such that the reverse order condition showed larger deviations on the extrapolation

bands. No other interactions were significant.



IMPACT OF TRAINING VARIABILITY ON VISUOMOTOR FUNCTION LEARNING AND
EXTRAPOLATION 29

Reverse

Original

10
0−

30
0

35
0−

55
0

60
0−

80
0

80
0−

10
00

10
00

−1
20

0

12
00

−1
40

0

0

100

200

300

400

0

100

200

300

400

Band

D
ev

ia
tio

n 
F

ro
m

 T
ar

ge
t

Constant Varied

A

Reverse

Original

Tr
ain

ed

Extr
ap

ola
tio

n

0

200

400

0

200

400

Band Type

A
bs

ol
ut

e 
D

ev
ia

tio
n 

F
ro

m
 B

an
d

Constant Varied

B

Figure 14: Experiment 3 Testing Accuracy. A) Empirical Deviations from target band during test-
ing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Shown separately
for groups trained with the original order (used in E1) and reverse order (used in E2). Error bars
represent 95% credible intervals.
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Table 10: Experiment 3 testing discrimination. Bayesian Mixed Model Predicting Vx as a func-
tion of condition (Constant vs. Varied) and Velocity Band. The Intercept represents the base-
line condition (constant training & original order), and the Band coefficient represents the slope
for the baseline condition. The interaction terms which include condit and Band (e.g., condit-
Varied:Band & conditVaried:bandOrderReverse:band) respectively indicate how the slopes of the
varied-original condition differed from the baseline condition, and how varied-reverse condition
differed from the varied-original condition

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 601.83 504.75 699.42 1.00

conditVaried 12.18 -134.94 162.78 0.56

bandOrderReverse 13.03 -123.89 144.67 0.58

Band 0.49 0.36 0.62 1.00

conditVaried:bandOrderReverse -338.15 -541.44 -132.58 1.00

conditVaried:Band -0.04 -0.23 0.15 0.67

bandOrderReverse:band -0.10 -0.27 0.08 0.86

conditVaried:bandOrderReverse:band 0.42 0.17 0.70 1.00

Testing Discrimination. The full results of the discrimination model are presented in Ta-

ble 9. For the purposes of assessing group differences in discrimination, only the coefficients

including the band variable are of interest. The baseline effect of band represents the slope co-

efficient for the constant training - original order condition, this effect was significant 𝛽 = 0.49,

95% CrI [0.36, 0.62]; pd = 100%. Neither of the two way interactions reached significance, 𝛽 =

-0.04, 95% CrI [-0.23, 0.15]; pd = 66.63%, 𝛽 = -0.1, 95% CrI [-0.27, 0.08]; pd = 86.35%. However, the

three way interaction between training condition, band order, and target band was significant, 𝛽

= 0.42, 95% CrI [0.17, 0.7]; pd = 99.96% - indicating a greater slope for the varied condition trained
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with reverse order bands. This interaction is shown in Figure 15, where the steepness of the best

fitting line for the varied-reversed condition is noticeably steeper than the other conditions.
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Figure 15: Experiment 3. Empirical distribution of velocities produced in the testing stage.
Translucent bands with dash lines indicate the correct range for each velocity band.
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Experiment 3 Summary

In Experiment 3, we investigated the effects of training condition (constant vs. varied)

and band type (training vs. extrapolation) on participants’ accuracy and discrimination during

the testing phase. Unlike the previous experiments, participants received only ordinal, not con-

tinuous valued, feedback during the training phase. Additionally, Experiment 3 included both

the original order condition from Experiment 1 and the reverse order condition from Experiment

2. The results revealed no significant main effects of training condition on testing accuracy, nor

was there a significant difference between groups in band discrimination. However, we observed

a significant three-way interaction for the discrimination analysis, indicating that the varied con-

dition showed a steeper slope coefficient on the reverse order bands compared to the constant

condition. This result suggests that varied training enhanced participants’ ability to discriminate

between velocity bands, but only when the band order was reversed during testing.

Computational Model

Themodeling goal is to implement a full process model capable of both 1) producing novel

responses and 2) modeling behavior in both the learning and testing stages of the experiment.

For this purpose, we will apply the associative learning model (ALM) and the EXAM model of

function learning (DeLosh et al., 1997). ALM is a simple connectionist learning model which

closely resembles Kruschke’s ALCOVE model (Kruschke, 1992), with modifications to allow for

the generation of continuous responses.
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Figure 16: Experiment 3 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well partic-
ipants discriminated between velocity bands. B) The distribution of slope coefficients for each
condition. Larger slopes indicates better discrimination. C) Individual participant slopes. Error
bars represent 95% HDI.
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Figure 17: The Associative Learning Model (ALM). The diagram illustrates the basic structure
of the ALM model used in the present work. Input nodes are activated as a function of their
similarity to the lower-boundary of the target band. The generalization parameter, 𝑐, determines
the degree towhich nearby input nodes are activated. The output nodes are activated as a function
of the weighted sum of the input nodes. During training, when feedback is provided, network
weights connecting the input layer to the output layer are updated via the delta rule.
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ALM & Exam

ALM is a localist neural network model (Page, 2000), with each input node corresponding

to a particular stimulus, and each output node corresponding to a particular response value. The

units in the input layer activate as a function of their Gaussian similarity to the input stimulus (

a_i(X) = exp(-c(X - X_i)^2) ). So, for example, an input stimulus of value 55 would induce maximal

activation of the input unit tuned to 55. Depending on the value of the generalization parameter,

the nearby units (e.g., 54 and 56; 53 and 57) may also activate to some degree. The units in the

input layer activate as a function of their similarity to a presented stimulus. The input layer is

fully connected to the output layer, and the activation for any particular output node is simply

the weighted sum of the connection weights between that node and the input activations. The

network then produces a response by taking the weighted average of the output units (recall

that each output unit has a value corresponding to a particular response). During training, the

network receives feedback which activates each output unit as a function of its distance from

the ideal level of activation necessary to produce the correct response. The connection weights

between input and output units are then updated via the standard delta learning rule, where the

magnitude of weight changes are controlled by a learning rate parameter.

The EXAM model is an extension of ALM, with the same learning rule and representa-

tional scheme for input and output units. EXAM differs from ALM only in its response rule, as

it includes a linear extrapolation mechanism for generating novel responses. When a novel test

stimulus, 𝑋 , is presented, EXAM first identifies the two nearest training stimuli, 𝑋1 and 𝑋2, that

bracket 𝑋 . This is done based on the Gaussian activation of input nodes, similar to ALM, but

focuses on identifying the closest known points for extrapolation.
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Slope Calculation: EXAM calculates a local slope, 𝑆, using the responses associated with

𝑋1 and 𝑋2. This is computed as:

𝑆 = 𝑚(𝑋1) − 𝑚(𝑋2)
𝑋1 − 𝑋2

where 𝑚(𝑋1) and 𝑚(𝑋2) are the output values from ALM corresponding to the 𝑋1 and 𝑋2

inputs.

Response Generation: The response for the novel stimulus 𝑋 is then extrapolated using

the slope 𝑆:

𝐸[𝑌 |𝑋] = 𝑚(𝑋1) + 𝑆 ⋅ |𝑋 − 𝑋1|

Here, 𝑚(𝑋1) is the ALM response value from the training data for the stimulus closest

to 𝑋 , and (𝑋 − 𝑋1) represents the distance between the novel stimulus and the nearest training

stimulus.

Although this extrapolation rule departs from a strictly similarity-based generalization

mechanism, EXAM is distinct from pure rule-based models in that it remains constrained by the

weights learned during training. EXAM retrieves the two nearest training inputs, and the ALM

responses associated with those inputs, and computes the slope between these two points. The

slope is then used to extrapolate the response to the novel test stimulus. Because EXAM requires

at least two input-output pairs to generate a response, additional assumptions were required in

order for it to generate resposnes for the constant group. We assumed that participants come

to the task with prior knowledge of the origin point (0,0), which can serve as a reference point
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necessary for the model to generate responses for the constant group. This assumption is moti-

vated by previous function learning research (Brown & Lacroix, 2017), which through a series of

manipulations of the y intercept of the underlying function, found that participants consistently

demonstrated knowledge of, or a bias towards, the origin point (see Kwantes & Neal (2006) for

additional evidence of such a bias in function learning tasks).

See Table 11 for a full specification of the equations that define ALM and EXAM, and

Figure 17 for a visual representation of the ALM model.

Table 11: ALM & EXAM Equations

ALM Response Generation

Input Activation 𝑎𝑖(𝑋) = 𝑒−𝑐(𝑋−𝑋𝑖)2

∑𝑀
𝑘=1 𝑒−𝑐(𝑋−𝑋𝑘)2

Input nodes activate as a

function of Gaussian similarity

to stimulus

Output Activation 𝑂𝑗(𝑋) = ∑𝑀
𝑘=1 𝑤𝑗𝑖 ⋅ 𝑎𝑖(𝑋) Output unit 𝑂𝑗 activation is the

weighted sum of input

activations and association

weights

Output Probability 𝑃[𝑌𝑗 |𝑋 ] = 𝑂𝑗(𝑋)
∑𝑀

𝑘=1 𝑂𝑘(𝑋) The response, 𝑌𝑗 probabilites

computed via Luce’s choice

rule

Mean Output 𝑚(𝑋) = ∑𝐿
𝑗=1 𝑌𝑗 ⋅ 𝑂𝑗(𝑥)

∑𝑀
𝑘=1 𝑂𝑘(𝑋) Weighted average of

probabilities determines

response to X
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ALM Response Generation

ALM Learning

Feedback 𝑓𝑗(𝑍) = 𝑒−𝑐(𝑍−𝑌𝑗)2 feedback signal Z computed as

similarity between ideal

response and observed

response

magnitude of error Δ𝑗𝑖 = (𝑓𝑗(𝑍) − 𝑜𝑗(𝑋))𝑎𝑖(𝑋) Delta rule to update weights.

Update Weights 𝑤𝑛𝑒𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂Δ𝑗𝑖 Updates scaled by learning rate

parameter 𝜂.

EXAM Extrapolation

Instance Retrieval 𝑃[𝑋𝑖|𝑋 ] = 𝑎𝑖(𝑋)
∑𝑀

𝑘=1 𝑎𝑘(𝑋) Novel test stimulus 𝑋 activates

input nodes 𝑋𝑖

Slope Computation 𝑆 = 𝑚(𝑋1)−𝑚(𝑋2)
𝑋1−𝑋2

Slope value, 𝑆 computed from

nearest training instances

Response 𝐸[𝑌 |𝑋𝑖] = 𝑚(𝑋𝑖) + 𝑆 ⋅ [𝑋 − 𝑋𝑖] Final EXAM response is the

ALM response for the nearest

training stimulus, 𝑚(𝑋𝑖),

adjusted by local slope 𝑆.

Model Fitting

To fit ALM and EXAM to our participant data, we employ a similar method toMcDaniel et

al. (2009), wherein we examine the performance of each model after being fit to various subsets
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of the data. Each model was fit to the data with three separate procedures: 1) fit to maximize

predictions of the testing data, 2) fit to maximize predictions of both the training and testing data,

3) fit to maximize predictions of the just the training data. We refer to this fitting manipulations

as “Fit Method” in the tables and figures below. It should be emphasized that for all three fit

methods, the ALM and EXAM models behave identically - with weights updating only during

the training phase. Models were fit separately to the data of each individual participant. The free

parameters for bothmodels are the generalization (𝑐) and learning rate (𝑙𝑟 ) parameters. Parameter

estimation was performed using approximate Bayesian computation (ABC), which we describe

in detail below.

Approximate Bayesian Computation

To estimate the parameters of ALM and EXAM, we used approximate Bayesian computation

(ABC), enabling us to obtain an estimate of the posterior distribution of the generalization

and learning rate parameters for each individual. ABC belongs to the class of simulation-

based inference methods (Cranmer et al., 2020), which have begun being used for parameter

estimation in cognitive modeling relatively recently (Kangasrääsiö et al., 2019; Turner et al.,

2016; Turner & Van Zandt, 2012). Although they can be applied to any model from which

data can be simulated, ABCmethods aremost useful for complexmodels that lack an explicit

likelihood function (e.g., many neural network models).

The general ABC procedure is to 1) define a prior distribution over model parameters. 2)

sample candidate parameter values, 𝜃∗, from the prior. 3) Use 𝜃∗ to generate a simulated

dataset, 𝐷𝑎𝑡𝑎𝑠𝑖𝑚. 4) Compute a measure of discrepancy between the simulated and observed

datasets, 𝑑𝑖𝑠𝑐𝑟𝑒𝑝(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠). 5) Accept 𝜃∗ if the discrepancy is less than the tolerance
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threshold, 𝜖, otherwise reject 𝜃∗. 6) Repeat until the desired number of posterior samples

are obtained.

Although simple in the abstract, implementations of ABC require researchers to make a

number of non-trivial decisions as to i) the discrepancy function between observed and sim-

ulated data, ii) whether to compute the discrepancy between trial level data, or a summary

statistic of the datasets, iii) the value of the minimum tolerance 𝜖 between simulated and

observed data. For the present work, we follow the guidelines from previously published

ABC tutorials (Farrell & Lewandowsky, 2018; Turner & Van Zandt, 2012). For the test stage,

we summarized datasets with mean velocity of each band in the observed dataset as 𝑉 (𝑘)
𝑜𝑏𝑠

and in the simulated dataset as 𝑉 (𝑘)
𝑠𝑖𝑚 , where 𝑘 represents each of the six velocity bands. For

computing the discrepancy between datasets in the training stage, we aggregated training

trials into three equally sized blocks (separately for each velocity band in the case of the var-

ied group). After obtaining the summary statistics of the simulated and observed datasets,

the discrepancy was computed as the mean of the absolute difference between simulated

and observed datasets (Equation 1 and Equation 2). For the models fit to both training and

testing data, discrepancies were computed for both stages, and then averaged together.

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑒𝑠𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
6

6
∑
𝑘=1

|𝑉 (𝑘)
𝑜𝑏𝑠 − 𝑉 (𝑘)

𝑠𝑖𝑚 | (1)
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𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

|𝑉 (𝑗)
𝑜𝑏𝑠,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑉 (𝑗)

𝑠𝑖𝑚,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 |

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑣𝑎𝑟 𝑖𝑒𝑑(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠 × 3

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

3
∑
𝑘=1

|𝑉 (𝑗,𝑘)
𝑜𝑏𝑠,𝑣𝑎𝑟 𝑖𝑒𝑑 − 𝑉 (𝑗,𝑘)

𝑠𝑖𝑚,𝑣𝑎𝑟 𝑖𝑒𝑑 |

(2)

The final component of our ABC implementation is the determination of an appropriate

value of 𝜖. The setting of 𝜖 exerts strong influence on the approximated posterior distribu-

tion. Smaller values of 𝜖 increase the rejection rate, and improve the fidelity of the approx-

imated posterior, while larger values result in an ABC sampler that simply reproduces the

prior distribution. Because the individual participants in our dataset differed substantially

in terms of the noisiness of their data, we employed an adaptive tolerance setting strategy

to tailor 𝜖 to each individual. The initial value of 𝜖 was set to the overall standard deviation

of each individual’s velocity values. Thus, sampled parameter values that generated sim-

ulated data within a standard deviation of the observed data were accepted, while worse

performing parameters were rejected. After every 300 samples the tolerance was allowed

to increase only if the current acceptance rate of the algorithm was less than 1%. In such

cases, the tolerance was shifted towards the average discrepancy of the 5 best samples ob-

tained thus far. To ensure the acceptance rate did not become overly permissive, 𝜖 was also

allowed to decrease every time a sample was accepted into the posterior.

For each of the 156 participants from Experiment 1, the ABC algorithm was run until 200

samples of parameters were accepted into the posterior distribution. Obtaining this number of
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posterior samples required an average of 205,000 simulation runs per participant. Fitting each

combination of participant, Model (EXAM & ALM), and fitting method (Test only, Train only,

Test & Train) required a total of 192 million simulation runs. To facilitate these intensive compu-

tational demands, we used the Future Package in R (Bengtsson, 2021), allowing us to parallelize

computations across a cluster of ten M1 iMacs, each with 8 cores.

Modelling Results

Table 12: Model errors predicting empirical data from Experiment 1 - aggregated over the full
posterior distribution for each participant. Note that Fit Method refers to the subset of the data
that the model was trained on, while Task Stage refers to the subset of the data that the model
was evaluated on.

ALM EXAM

Task Stage Fit Method Constant Varied Constant Varied

Test Fit to Test Data 199.93 103.36 104.01 85.68

Test Fit to Test & Training Data 216.97 170.28 127.94 144.86

Test Fit to Training Data 467.73 291.38 273.30 297.91

Train Fit to Test Data 297.82 2, 016.01 53.90 184.00

Train Fit to Test & Training Data 57.40 132.32 42.92 127.90

Train Fit to Training Data 51.77 103.48 51.43 107.03

The posterior distributions of the 𝑐 and 𝑙𝑟 parameters are shown Figure 18, and model

predictions are shown alongside the empirical data in Figure 20. Therewere substantial individual

differences in the posteriors of both parameters, with the within-group individual differences

generally swamped any between-group or between-model differences. The magnitude of these
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Figure 18: Posterior Distributions of 𝑐 and 𝑙𝑟 parameters. Points represent median values, thicker
intervals represent 66% credible intervals and thin intervals represent 95% credible intervals
around the median. Note that the y-axes of the plots for the c parameter are scaled logarith-
mically.
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Figure 19: Model residuals for each combination of training condition, fit method, and model.
Residuals reflect the difference between observed and predicted values. Lower values indicate
better model fit. Note that y-axes are scaled differently between facets. A) Residuals predicting
each block of the training data. B) Residuals predicting each band during the testing stage. Bolded
bars indicate bands that were trained, non-bold bars indicate extrapolation bands.
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individual differences remains even if we consider only the single best parameter set for each

subject.

We used the posterior distribution of 𝑐 and 𝑙𝑟 parameters to generate a posterior predictive

distribution of the observed data for each participant, which then allows us to compare the empir-

ical data to the full range of predictions from each model. Aggregated residuals are displayed in

Figure 19. The pattern of training stage residual errors are unsurprising across the combinations

of models and fitting method . Differences in training performance between ALM and EXAM

are generally minor (the two models have identical learning mechanisms). The differences in the

magnitude of residuals across the three fitting methods are also straightforward, with massive

errors for the ‘fit to Test Only’ model, and the smallest errors for the ‘fit to train only’ models.

It is also noteworthy that the residual errors are generally larger for the first block of training,

which is likely due to the initial values of the ALM weights being unconstrained by whatever

initial biases participants tend to bring to the task. Future work may explore the ability of the

models to capture more fine grained aspects of the learning trajectories. However for the present

purposes, our primary interest is in the ability of ALM and EXAM to account for the testing pat-

terns while being constrained, or not constrained, by the training data. All subsequent analyses

and discussion will thus focus on the testing stage.

The residuals of the model predictions for the testing stage (Figure 19) show an unsur-

prising pattern across fitting methods - with models fit only to the test data showing the best

performance, followed by models fit to both training and test data, and with models fit only to

the training data showing the worst performance (note that Y-axes are scaled different between

plots). Although EXAM tends to perform better for both Constant and Varied participants (see

also Figure 21), the relative advantage of EXAM is generally larger for the Constant group - a
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pattern consistent across all three fitting methods. The primary predictive difference between

ALM and EXAM is made clear in Figure 20, which directly compares the observed data against

the posterior predictive distributions for both models. Regardless of how the models are fit, only

EXAM can capture the pattern where participants are able to discriminate all 6 target bands.

To quantitatively assess the differences in performance between models, we fit a Bayesian

regression model predicting the errors of the posterior predictions of each models as a function

of the Model (ALM vs. EXAM) and training condition (Constant vs. Varied).

Model errors were significantly lower for EXAM (𝛽 = -37.54, 95% CrI [-60.4, -14.17], pd

= 99.85%) than ALM. There was also a significant interaction between Model and Condition (𝛽

= 60.42, 95% CrI [36.17, 83.85], pd = 100%), indicating that the advantage of EXAM over ALM

was significantly greater for the constant group. To assess whether EXAM predicts performance

significantly better for Constant than for Varied subjects, we calculated the difference in model

error between the Constant and Varied conditions specifically for EXAM. The results indicated

that the model error for EXAM was significantly lower in the Constant condition compared to

the Varied condition, with a mean difference of -22.88 (95% CrI [-46.02, -0.97], pd = 0.98).

Table 13: Models errors predicting empirical data - aggregated over all participants, posterior
parameter values, and velocity bands. Note that Fit Method refers to the subset of the data that
the model was trained on, while Task Stage refers to the subset of the data that the model was
evaluated on.

E2 E3

ALM EXAM ALM EXAM

Task Stage Constant Varied Constant Varied Constant Varied Constant Varied
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Fit to Test Data

Test 239.7 129.8 99.7 88.2 170.1 106.1 92.3 72.8

Train 53.1 527.1 108.1 169.3 70.9 543.5 157.8 212.7

Fit to Test & Training Data

Test 266.0 208.2 125.1 126.4 197.7 189.5 130.0 128.5

Train 40.0 35.4 30.4 23.6 49.1 85.6 49.2 78.4

Fit to Training Data

Test 357.4 295.9 305.1 234.5 415.0 298.8 295.5 243.7

Train 42.5 23.0 43.2 22.6 51.4 63.8 51.8 65.3
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Figure 20: Empirical data and Model predictions for mean velocity across target bands. Fitting
methods (Test Only, Test & Train, Train Only) - are separated across rows, and Training Condition
(Constant vs. Varied) are separated by columns. Each facet contains the predictions of ALM and
EXAM, alongside the observed data.
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Figure 21: A-C) Conditional effects ofModel (ALMvs EXAM) and Condition (Constant vs. Varied).
Lower values on the y axis indicate better model fit. D) Specific contrasts of model performance
comparing 1) EXAM fits between constant and varied training; 2) ALM vs. EXAM for the varied
group; 3) ALM fits between constant and varied. Negative error differences indicate that the term
on the left side (e.g., EXAM Constant) tended to have smaller model residuals.
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Figure 22: Empirical data and Model predictions from Experiment 2 and 3 for the testing stage.
Observed data is shown on the right. Bolded bars indicate bands that were trained, non-bold bars
indicate extrapolation bands.
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Table 14: Results of Bayesian Regression models predicting model error as a function of Model
(ALM vs. EXAM), Condition (Constant vs. Varied), and the interaction between Model and Con-
dition. The values represent the estimated coefficient for each term, with 95% credible intervals in
brackets. The intercept reflects the baseline of ALM and Constant. The other estimates indicate
deviations from the baseline for the EXAM mode and varied condition. Lower values indicate
better model fit.

Credible Interval

Experiment Term Estimate 95% CrI Lower 95% CrI Upper pd

Experiment 1

Exp 1 Intercept 176.3 156.9 194.6 1.00

Exp 1 ModelEXAM −88.4 −104.5 −71.8 1.00

Exp 1 conditVaried −37.5 −60.4 −14.2 1.00

Exp 1 ModelEXAM:conditVaried 60.4 36.2 83.8 1.00

Experiment 2

Exp 2 Intercept 245.9 226.2 264.5 1.00

Exp 2 ModelEXAM −137.7 −160.2 −115.5 1.00

Exp 2 conditVaried −86.4 −113.5 −59.3 1.00

Exp 2 ModelEXAM:conditVaried 56.9 25.3 88.0 1.00

Experiment 3

Exp 3 Intercept 164.8 140.1 189.4 1.00

Exp 3 ModelEXAM −65.7 −86.0 −46.0 1.00

Exp 3 conditVaried −40.6 −75.9 −3.0 0.98

Exp 3 bandOrderReverse 25.5 −9.3 58.7 0.93

Exp 3 ModelEXAM:conditVaried 41.9 11.2 72.5 0.99

Exp 3 ModelEXAM:bandOrderReverse −7.3 −34.5 21.1 0.70

Exp 3 conditVaried:bandOrderReverse 30.8 −19.6 83.6 0.88

Exp 3 ModelEXAM:conditVaried:bandOrderReverse −60.6 −101.8 −18.7 1.00

Model Fits to Experiment 2 and 3. Data from Experiments 2 and 3 were fit to ALM and

EXAM in the same manner as Experiment 1. For brevity, we only plot and discuss the results

of the “fit to training and testing data” models - results from the other fitting methods can be
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found in the appendix. The model fitting results for Experiments 2 and 3 closely mirrored those

observed in Experiment 1. The Bayesian regression models predicting model error as a function

of Model (ALM vs. EXAM), Condition (Constant vs. Varied), and their interaction (see Table 14)

revealed a consistent main effect of Model across all three experiments. The negative coefficients

for the ModelEXAM term (Exp 2: 𝛽 = -86.39, 95% CrI -113.52, -59.31, pd = 100%; Exp 3: 𝛽 = -40.61,

95% CrI -75.9, -3.02, pd = 98.17%) indicate that EXAM outperformed ALM in both experiments.

Furthermore, the interaction between Model and Condition was significant in both Experiment

2 (𝛽 = 56.87, 95% CrI 25.26, 88.04, pd = 99.98%) and Experiment 3 (𝛽 = 41.9, 95% CrI 11.2, 72.54,

pd = 99.35%), suggesting that the superiority of EXAM over ALM was more pronounced for the

Constant group compared to the Varied group, as was the case in Experiment 1. Recall that Ex-

periment 3 included participants in both the original and reverse order conditions - and that this

manipulation interacted with the effect of training condition. We thus also controlled for band

order in our Bayesian Regression assessing the relative performance of EXAM and ALM in Ex-

periment 3. There was a significant three way interaction between Model, Training Condition,

and Band Order (𝛽 = -60.6, 95% CrI -101.8, -18.66, pd = 99.83%), indicating that the relative advan-

tage of EXAM over ALM was only more pronounced in the original order condition, and not the

reverse order condition (see Figure 23).

Computational Model Summary.

Across all three experiments, the model fits consistently favored the Extrapolation-

Association Model (EXAM) over the Associative Learning Model (ALM). This preference for

EXAM was particularly pronounced for participants in the constant training conditions (note

the positive coefficients on ModelEXAM:conditVaried interaction terms Table 14). This pattern

is clearly illustrated in Figure 24, which plots the difference in model errors between ALM
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Figure 23: Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Varied) on
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and EXAM for each individual participant. Both varied and constant conditions have a greater

proportion of subjects better fit by EXAM (positive error differences), with the magnitude of

EXAM’s advantage visibly larger for the constant group.

The superior performance of EXAM, especially for the constant training groups, may ini-

tially seem counterintuitive. Onemight assume that exposure to multiple, varied examples would

be necessary to extract an abstract rule. However, EXAM is not a conventional rule-based model;

it does not require the explicit abstraction of a rule. Instead, rule-based responses emerge during

the retrieval process. The constant groups’ formation of a single, accurate input-output associa-

tion, combined with the usefulness of the zero point, seem to have been sufficient for EXAM to

capture their performance. A potential concern is that the assumption of participants utilizing

the zero point essentially transforms the extrapolation problem into an interpolation problem.

However, this concern is mitigated by the consistency of the results across both the original and

reversed order conditions (the testing extrapolation bands fall in between the constant training

band and the 0 point in experiment 1, but not in experiment 2).

The fits to the individual participants also reveal a number of interesting cases where the

models struggle to capture the data (Figure 25). For example participant 68 exhibits a strong non-

monotonicity in the highest velocity band, a pattern which ALM can mimic, but which EXAM

cannot capture, given that it enforces a simple linear relationship between target velocity and re-

sponse. Participant 70 (lower right corner of Figure 25) had a roughly parabolic response pattern

in their observed data, a pattern which neither model can properly reproduce, but which causes

EXAM to perform particularly poorly.

Modeling Limitations. The present work compared models based on their ability to predict

the observed data, without employing conventional model fit indices such as the Akaike Informa-



IMPACT OF TRAINING VARIABILITY ON VISUOMOTOR FUNCTION LEARNING AND
EXTRAPOLATION 55

tion Criterion (AIC) or the Bayesian Information Criterion (BIC). These indices, which penalize

models based on their number of free parameters, would have been of limited utility in the cur-

rent case, as both ALM and EXAM have two free parameters. However, despite having the same

number of free parameters, EXAM could still be considered the more complex model, as it in-

corporates all the components of ALM plus an additional mechanism for rule-based responding.

A more comprehensive model comparison approach might involve performing cross-validation

with a held-out subset of the data (Mezzadri et al., 2022) or penalizing models based on the range

of patterns they can produce (Dome & Wills, 2023), under the assumption that more constrained

models are more impressive when they do adequately fit a given pattern of results.
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General Discussion

Across three experiments, we investigated the impact of training variability on learning

and extrapolation in a visuomotor function learning task.

In Experiment 1, participants in the varied training condition, who experienced a wider

range of velocity bands during training, showed lower accuracy at the end of training compared

to those in the constant training condition. Crucially, during the testing phase, the varied group

exhibited significantly larger deviations from the target velocity bands, particularly for the ex-

trapolation bands that were not encountered during training. The varied group also showed

less discrimination between velocity bands, as evidenced by shallower slopes when predicting

response velocity from target velocity band.

Experiment 2 extended these findings by reversing the order of the training and testing

bands. Similar to Experiment 1, the varied group demonstrated poorer performance during both

training and testing phases. However, unlike Experiment 1, the varied group did not show a

significant difference in discrimination between bands compared to the constant group.

In Experiment 3, we provided only ordinal feedback during training, in contrast to the

continuous feedback provided in the previous experiments. Participants were assigned to both

an order condition (original or reverse) and a training condition (constant or varied). The varied

condition showed larger deviations at the end of training, consistent with the previous exper-

iments. Interestingly, there was a significant interaction between training condition and band

order, with the varied condition showing greater accuracy in the reverse order condition. Dur-

ing testing, the varied group once again exhibited larger deviations, particularly for the extrap-

olation bands. The reverse order conditions showed smaller deviations compared to the original
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order conditions. Discrimination between velocity bands was poorer for the varied group in the

original order condition, but not in the reverse order condition.

All three of our experiments yielded evidence that varied training conditions produced

less learning by the end of training, a pattern consistent with much of the previous research on

the influence of training variability (Catalano &Kleiner, 1984; Soderstrom&Bjork, 2015; Wrisberg

et al., 1987). The sole exception to this pattern was the reverse order condition in Experiment

3, where the varied group was not significantly worse than the constant group. Neither the

varied condition trained with the same reverse-order items in Experiment 2, nor the original-

order varied condition trained with ordinal feedback in Experiment 3 were able to match the

performance of their complementary constant groups by the end of training, suggesting that

the relative success of the ordinal-reverse ordered varied group cannot be attributed to item or

feedback effects alone.

Our findings also diverge from the two previous studies that cleanly manipulated the

variability of training items in a function learning task (DeLosh et al., 1997; van Dam & Ernst,

2015), although the varied training condition of van Dam & Ernst (2015) also exhibited less learn-

ing, neither of these previous studies observed any difference between training conditions in

extrapolation to novel items. Like DeLosh et al. (1997) , our participants exhibited above chance

extrapolation/discrimination of novel items, however they observed no difference between any

of their three training conditions. A noteworthy difference difference between our studies is that

DeLosh et al. (1997) trained participants with either 8, 20, or 50 unique items (all receiving the

same total number of training trials). These larger sets of unique items, combined with the fact

that participants achieved near ceiling level performance by the end of training, may have made

it more difficult to observe any between-group differences of training variation in their study.
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van Dam & Ernst (2015) ’s variability manipulation was more similar to our own, as they trained

participants with either 2 or 5 unique items. However, although the mapping between their input

stimuli and motor responses was technically linear, the input dimension was more complex than

our own, as it was defined by the degree of “spikiness” of the input shape. This entirely arbitrary

mapping also would have precluded any sensible “0” point, which may partially explain why

neither of their training conditions were able to extrapolate linearly in the manner observed in

the current study or in DeLosh et al. (1997).

Limitations

While the present study provides valuable insights into the influence of training variabil-

ity on visuomotor function learning and extrapolation, there are several limitations that should

be flagged. First, although the constant training group never had experience from a velocity band

closer to the extrapolation bands than the varied group, they always had a three times more tri-

als with the nearest velocity band. Such a difference may be an unavoidable consequence of a

varied vs. constant design which matches the total number of training trials between the two

groups. However, in order to more carefully tease apart the influence of variability from the

influence of frequency/repetition effects, future research could explore alternative designs that

maintain the variability manipulation while equating the amount of training on the nearest ex-

amples across conditions, such as by increasing the total number of trials for the varied group.

Another limitation is that the testing stage did not include any interpolation items, i.e. the par-

ticipants were tested only from the training bands they experienced during training, or from

extrapolation bands. The absence of interpolation testing makes it more difficult to distinguish

between the effects of training variability on extrapolation specifically, as opposed to generaliza-

tion more broadly. Of course, the nature of the constant training condition makes interpolation
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testing impossible to implement, however future studies might compare training regimes that

each include at least 2 distinct items, but still differ in the total amount of variability experienced,

which would then allow groups to be compared in terms of both interpolation and extrapola-

tion testing. Finally, the task employed in the present study consisted of only a linear, positive

function. Previous work in human function learning has repeatedly shown that such functions

are among the easiest to learn, but that humans are nonetheless capable of learning negative,

non-linear, or discontinuous functions (Busemeyer et al., 1997; DeLosh et al., 1997; Kalish, 2013;

McDaniel et al., 2009). It thus remains an open question as to whether the influence of training

variability might interact with various components of the to-be-learned function.

Supplementary

Apppendix available at https://tegorman13.github.io/htw/Analysis/e1_Analysis.html
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