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Abstract

In project 1, we applied model-based techniques to quantify and control for the

similarity between training and testing experience, which in turn enabled us to

account for the difference between varied and constant training via an extended

version of a similarity based generalization model. In project 2, we will go a step

further, implementing a full process model capable of both 1) producing novel re-

sponses and 2) modeling behavior in both the learning and testing stages of the

experiment. Project 2 also places a greater emphasis on extrapolation performance

following training - as varied training has often been purported to be particularly

beneficial in such situations.

Keywords—Learning Generalization, Function Learning, Visuomotor learning, Training

Variability
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HTW

Introduction

A longstanding issue across both science and instruction has been to understand how

various aspects of an educational curriculum or training program influence learning acquisition

and generalization. One such aspect, which has received a great deal of research attention, is

the variability of examples experienced during training (Raviv et al., 2022). The influence of

training variation has been studied in numerous domains, including category learning (Cohen

et al., 2001; Posner & Keele, 1968), visuomotor learning (Schmidt, 1975; Berniker et al., 2014),

language learning (Perry et al., 2010), and education (Braithwaite & Goldstone, 2015; Guo et al.,

2014). The pattern of results is complex, with numerous studies finding both beneficial (Braun

et al., 2009; Catalano & Kleiner, 1984; Roller et al., 2001), as well as null or negative effects (Hu &

Nosofsky, 2024; Van Rossum, 1990; Brekelmans et al., 2022). The present study seeks to contribute

to the large body of existing research by examining the influence of variability in visuomotor

function learning - a domain in which it has been relatively under-studied.

Function Learning and Extrapolation

The study of human function learning investigates how people learn relationships be-

tween continuous input and output values. Function learning is studied both in tasks where

individuals are exposed to a sequence of input/output pairs (DeLosh et al., 1997; McDaniel et al.,

2013), or situations where observers are presented with a an incomplete scatterplot or line graph

andmake predictions about regions of the plot that don’t contain data (Ciccione &Dehaene, 2021;

Courrieu, 2012; Said & Fischer, 2021; Schulz et al., 2020).
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Carroll (1963) conducted the earliest work on function learning. Input stimuli and out-

put responses were both lines of varying length. The correct output response was related to the

length of the input line by a linear, quadratic, or random function. Participants in the linear and

quadratic performed above chance levels during extrapolation testing, with those in the linear

condition performing the best overall. Carroll argued that these results were best explained by a

ruled based model wherein learners form an abstract representation of the underlying function.

Subsequent work by Brehmer (1974),testing a wider array of functional forms, provided further

evidence for superior extrapolation in tasks with linear functions. Brehmer argued that individu-

als start out with an assumption of a linear function, but given sufficient error will progressively

test alternative hypothesis with polynomials of greater degree. Koh and Meyer (1991) employed

a visuomotor function learning task, wherein participants were trained on examples from an un-

known function relating the length of an input line to the duration of a response (time between

keystrokes). In this domain, participants performed best when the relation between line length

and response duration was determined by a power, as opposed to linear function. Koh & Meyer

developed the log-polynomial adaptive-regression model to account for their results.

The first significant challenge to the rule-based accounts of function learning was put

forth by DeLosh et al. (1997) . In their task, participants learned to associate stimulus magnitudes

with response magnitudes that were related via either linear, exponential, or quadratic function.

Participants approached ceiling performance by the end of training in each function condition,

and were able to correctly respond in interpolation testing trials. All three conditions demon-

strated some capacity for extrapolation, however participants in the linear condition tended to

underestimate the true function, while exponential and quadratic participants reliably overesti-
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mated the true function on extrapolation trials. Extrapolation and interpolation performance are

depicted in Figure 1.

The authors evaluated both of the rule-based models introduced in earlier research (with

some modifications enabling trial-by-trial learning). The polynomial hypothesis testing model

(Brehmer, 1974; Carroll, 1963) tended to mimic the true function closely in extrapolation, and

thus offered a poor account of the human data. The log-polynomial adaptive regression model

(Koh & Meyer, 1991) was able to mimic some of the systematic deviations produced by human

subjects, but also predicted overestimation in cases where underestimation occurred.

The authors also introduced two new function-learning models. The Associative Learning

Model (ALM) and the extrapolation-association model (EXAM). ALM is a two layer connectionist

model adapted from the ALCOVE model in the category learning literature (Kruschke, 1992).

ALM belongs to the general class of radial-basis function neural networks, and can be considered

a similarity-basedmodel in the sense that the nodes in the input layer of the network are activated

as a function of distance. The EXAM model retains the same similarity based activation and

associative learning mechanisms as ALM, while being augmented with a linear rule response

mechanism. When presented with novel stimuli, EXAM will retrieve the most similar input-

output examples encountered during training, and from those examples compute a local slope.

ALMwas able to provide a good account of participant training and interpolation data in all three

function conditions, however it was unable to extrapolate. EXAM, on the other hand, was able

to reproduce both the extrapolation underestimation, as well as the quadratic and exponential

overestimation patterns exhibited by the human participants. Subsequent research identified

some limitations in EXAM’s ability to account for cases where human participants learn and

extrapolate sinusoidal function Bott and Heit (2004) or to scenarios where different functions
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apply to different regions of the input space Kalish et al. (2004), though EXAM has been shown

to provide a good account of human learning and extrapolation in tasks with bi-linear, V shaped

input spaces Mcdaniel et al. (2009).

Variability and Function Learning

The influence of variability on function learning tasks has received relatively little at-

tention. The study by DeLosh et al. (1997) (described in detail above) did include a variability

manipulation (referred to as density in their paper), wherein participants were trained with ei-

ther either 8, 20, or 50 unique input-output pairs, with the total number of training trials held

constant. They found a minimal influence of variability on training performance, and no dif-

ference between groups in interpolation or extrapolation, with all three variability conditions

displaying accurate interpolation, and linearly biased extrapolation that was well accounted for

by the EXAM model.

In the domain of visuomotor learning, van Dam and Ernst (2015) employed a task which

required participants to learn a linear function between the spikiness of shape stimuli and the

correct horizontal position to make a rapid pointing response. The shapes ranged from very

spiky to completely circular at the extreme ends of the space. Participants trained with inter-

mediate shapes from a lower variation (2 shapes) or higher variation (5 shapes) condition, with

the 2 items of the lower varied condition matching the items used on the extreme ends of the

higher variation training space. Learning was significantly slower in the higher variation group.

However, the two conditions did not differ when tested with novel shapes, with both groups

producing extrapolation responses of comparable magnitudes to the most similar training item,

rather than in accordance with the true linear function. The authors accounted for both learn-

ing and extrapolation performance with a Bayesian learning model. Similar to ALM, the bayesian
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model assumes that generalization occurs as a Gaussian function of the distance between stimuli.

However unlike ALM, the bayesian learning model utilizes more elaborate probabilistic stimulus

representations, with a separate Kalman Filter for each shape stimulus.
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Figure 1: Generalization reproduced patterns from DeLosh et al. (1997) Figure 3. Stimulii that fall
within the dashed lines are interpolations of the training examples.

Overview Of Present Study

The present study investigates the influence of training variability on learning, general-

ization, and extrapolation in a uni-dimensional visuomotor function learning task. To the best

of our knowledge, this research is the first to employ the classic constant vs. varied training

manipulation, commonly used in the literature on the benefits of variability, in the context of a

uni-dimensional function learning task. Across three experiments, we compare constant and var-

ied training conditions in terms of learning performance, extrapolation accuracy, and the ability

to reliably discriminate between stimuli.

To account for the empirical results, we will apply a series of computational models,

including the Associative Learning Model (ALM) and the Extrapolation-Association Model

(EXAM). Notably, this study is the first to employ approximate Bayesian computation (ABC) to

fit these models to individual subject data, enabling us to thoroughly investigate the full range
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of posterior predictions of each model, and to examine the the ability of these influential models

of function learning to account for both the group level and individual level data.

Methods

Participants A total of 156 participants were recruited from the Indiana University Intro-

ductory Psychology Course. Participants were randomly assigned to one of two training condi-

tions: varied training or constant training.

Task. The “Hit The Wall” (HTW) visuomotor extrapolation task task was programmed in

Javascript, making heavy use of the phaser.io game library. The HTW task involved launching

a projectile such that it would strike the “wall” at target speed indicated at the top of the screen

(see Figure 2). The target velocities were given as a range, or band, of acceptable velocity val-

ues (e.g. band 800-1000). During the training stage, participants received feedback indicating

whether they had hit the wall within the target velocity band, or how many units their throw

was above or below from the target band. Participants were instructed that only the x velocity

component of the ball was relevant to the task. The y velocity, or the location at which the ball

struck the wall, had no influence on the task feedback.

/

https://phaser.io/
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Figure 2: The Hit the wall task. Participants launch the blue ball to hit the red wall at the target
velocity band indicated at the top of the screen. The ball must be released from within the orange
square - but the location of release, and the location at which the ball strikes the wall are both
irrelevant to the task feedback.

Procedure. All participants completed the task online. Participants were provided with a

description of the experiment and indicated informed consent. Figure 3 illustrates the general pro-

cedure. Participants completed a total of 90 trials during the training stage. In the varied training

condition, participants encountered three velocity bands (800-1000, 1000-1200, and 1200-1400).

Participants in the constant training condition trained on only one velocity band (800-1000) - the

closest band to what would be the novel extrapolation bands in the testing stage.

Following the training stage, participants proceeded immediately to the testing stage. Par-

ticipants were tested from all six velocity bands, in two separate stages. In the novel extrapolation

testing stage, participants completed “no-feedback” testing from three novel extrapolation bands

(100-300, 350-550, and 600-800), with each band consisting of 15 trials. Participants were also

tested from the three velocity bands that were trained by the varied condition (800-1000, 1000-
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1200, and 1200-1400). In the constant training condition, two of these bands were novel, while

in the varied training condition, all three bands were encountered during training. The order

in which participants completed the novel-extrapolation and testing-from-3-varied bands was

counterbalanced across participants. A final training stage presented participants with “feed-

back” testing for each of the three extrapolation bands (100-300, 350-550, and 600-800).

Figure 3: Experiment 1 Design. Constant and Varied participants complete different training
conditions.

Analyses Strategy

All data processing and statistical analyses were performed in R version 4.32 Team (2020).

To assess differences between groups, we used Bayesian Mixed Effects Regression. Model fitting

was performed with the brms package in R Bürkner (2017), and descriptive stats and tables were

extracted with the BayestestR packageMakowski et al. (2019). Mixed effects regression enables us

to take advantage of partial pooling, simultaneously estimating parameters at the individual and

group level. Our use of Bayesian, rather than frequentist methods allows us to directly quantify

the uncertainty in our parameter estimates, as well as avoiding convergence issues common to

the frequentist analogues of our mixed models.

Each model was set to run with 4 chains, 5000 iterations per chain, with the first 2500

discarded as warmup chains. Rhat values were within an acceptable range, with values <=1.02
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(see appendix for diagnostic plots). We used uninformative priors for the fixed effects of the

model (condition and velocity band), and weakly informative Student T distributions for for the

random effects. For each model, we report 1) the mean values of the posterior distribution for

the parameters of interest, 2) the lower and upper credible intervals (CrI), and the probability of

direction value (pd).

Group Comparison Code Data

End of Training

Accuracy

brm(dist ~ condit) Final Training

Block

Test Accuracy brm(dist ~ condit * bandType + (1|id) +

(1|bandInt)

All Testing trials

Band Discrimination brm(vx ~ condit * band +(1 + bandInt|id) All Testing Trials

In each experiment we compare varied and constant conditions in terms of 1) accuracy in

the final training block; 2) testing accuracy as a function of band type (trained vs. extrapolation

bands); 3) extent of discrimination between all six testing bands. We quantified accuracy as the

absolute deviation between the response velocity and the nearest boundary of the target band.

Thus, when the target band was velocity 600-800, throws of 400, 650, and 900 would result in

deviation values of 200, 0, and 100, respectively. The degree of discrimination between bands

was index by fitting a linear model predicting the response velocity as a function of the target

velocity. Participants who reliably discriminated between velocity bands tended to haves slope
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values ~1, while participants who made throws irrespective of the current target band would have

slopes ~0.

Results

800-1000 1000-1200 1200-1400

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

100
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Training Block
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Figure 4: Experiment 1 Training Stage. Deviations from target band across training blocks. Lower
values represent greater accuracy.

Table 2: Experiment 1 - End of training performance. The Intercept represents the average of
the baseline (constant condition), and the conditVaried coefficient reflects the difference between
the constant and varied groups. A larger positive estimates indicates a greater deviation (lower
accuracy) for the varied group.

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 106.34 95.46 117.25 1

conditVaried 79.64 57.92 101.63 1
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Training. Figure 4 displays the average deviations across training blocks for the varied

group, which trained on three velocity bands, and the constant group, which trained on one ve-

locity band. To compare the training conditions at the end of training, we analyzed performance

on the 800-1000 velocity band, which both groups trained on. The full model results are shown

in Table 1. The varied group had a significantly greater deviation than the constant group in the

final training block, (𝛽 = 79.64, 95% CrI [57.92, 101.63]; pd = 100%).

Table 3: Experiment 1 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation), and the interaction between the two factors. Larger coefficients indicate larger devi-
ations from the baselines (Condition=constant & bandType=Trained) - and a positive interaction
coefficient indicates disproporionate deviation for the varied condition on the extrapolation bands

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 152.55 70.63 229.85 1.0

conditVaried 39.00 -21.10 100.81 0.9

bandTypeExtrapolation 71.51 33.24 109.60 1.0

conditVaried:bandTypeExtrapolation 66.46 32.76 99.36 1.0

Testing. To compare accuracy between groups in the testing stage, we fit a Bayesianmixed

effects model predicting deviation from the target band as a function of training condition (varied

vs. constant) and band type (trained vs. extrapolation), with random intercepts for participants

and bands. The model results are shown in Table 3. The main effect of training condition was

not significant (𝛽 = 39, 95% CrI [-21.1, 100.81]; pd = 89.93%). The extrapolation testing items

had a significantly greater deviation than the training bands (𝛽 = 71.51, 95% CrI [33.24, 109.6];

pd = 99.99%). Most importantly, the interaction between training condition and band type was
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significant (𝛽 = 66.46, 95% CrI [32.76, 99.36]; pd = 99.99%), As shown in Figure 5, the varied group

had disproportionately larger deviations compared to the constant group in the extrapolation

bands.
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Figure 5: A) Deviations from target band during testing without feedback stage. B) Conditional
effect of condition (Constant vs. Varied) and testing band type (training vs. extrapolation) on
testing accuracy. Error bars represent 95% credible intervals.

Table 4: Experiment 1. Bayesian Mixed Model Predicting velocity as a function of condition
(Constant vs. Varied) and Velocity Band. Larger coefficients on Band represent greater sensitiv-
ity/discrimination.

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 408.55 327.00 490.61 1.00

conditVaried 164.05 45.50 278.85 1.00

Band 0.71 0.62 0.80 1.00



VARIABILITY AND EXTRAPOLATION 14

Term Estimate 95% CrI Lower 95% CrI Upper pd

condit*Band -0.14 -0.26 -0.01 0.98

Finally, to assess the ability of both conditions to discriminate between velocity bands, we

fit a model predicting velocity as a function of training condition and velocity band, with random

intercepts and random slopes for each participant. See Table 5 for the full model results. The es-

timated coefficient for training condition (𝛽 = 164.05, 95% CrI [45.5, 278.85], pd = 99.61%) suggests

that the varied group tends to produce harder throws than the constant group, but is not in and of

itself useful for assessing discrimination. Most relevant to the issue of discrimination is the coef-

ficient on the Band predictor (𝛽 = 0.71 95% CrI [0.62, 0.8], pd = 100%). Although the median slope

does fall underneath the ideal of value of 1, the fact that the 95% credible interval does not contain

0 provides strong evidence that participants exhibited some discrimination between bands. The

estimate for the interaction between slope and condition (𝛽 = -0.14, 95% CrI [-0.26, -0.01], pd =

98.39%), suggests that the discrimination was somewhat modulated by training condition, with

the varied participants showing less sensitivity between bands than the constant condition. This

difference is depicted visually in Figure 6.
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Table 5
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(a) Experiment 1. Conditional effect of training condition and Band. Ribbons indicate 95% HDI. The steep-
ness of the lines serves as an indicator of how well participants discriminated between velocity bands.

E1 Summary

In Experiment 1, we investigated how variability in training influenced participants’ abil-

ity learn and extrapolate in a visuomotor task. Our findings that training with variable conditions

rresulted in lower final training performance is consistent with much of the prior researchon the

influence of training variability (Raviv et al., 2022; Soderstrom & Bjork, 2015), and is particularly
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unsurprising in the present work, given that the constant group received three times the amount

of training on the velocity band common to the two conditions.

More importantly, the varied training group exhibited significantly larger deviations from

the target velocity bands during the testing phase, particularly for the extrapolation bands that

were not encountered by either condition during training.

Experiment 2

Methods & Procedure

The task and procedure of Experiment 2 was identical to Experiment 1, with the exception

that the training and testing bands were reversed (see Figure 8). The Varied group trained on

bands 100-300, 350-550, 600-800, and the constant group trained on band 600-800. Both groups

were tested from all six bands. A total of 110 participants completed the experiment (Varied: 55,

Constant: 55).

Figure 8: Experiment 2 Design. Constant and Varied participants complete different training
conditions. The training and testing bands are the reverse of Experiment 1.
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Results
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Figure 9: Experiment 2 Training Stage. Deviations from target band across training blocks. Lower
values represent greater accuracy.

Table 6: Experiment 2 - End of training performance. The Intercept represents the average of
the baseline (constant condition), and the conditVaried coefficient reflects the difference between
the constant and varied groups. A larger positive coefficient indicates a greater deviation (lower
accuracy) for the varied group.

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 91.01 80.67 101.26 1

conditVaried 36.15 16.35 55.67 1

Training. Figure 9 presents the deviations across training blocks for both constant and

varied training groups. We again compared training performance on the band common to both



VARIABILITY AND EXTRAPOLATION 19

groups (600-800). The full model results are shown in Table 1. The varied group had a significantly

greater deviation than the constant group in the final training block, ( 𝛽 = 36.15, 95% CrI [16.35,

55.67]; pd = 99.95%).

Table 7: Experiment 2 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation), and the interaction between the two factors. Larger coefficient estimates indicate
larger deviations from the baselines (constant & trained bands) - and a positive interaction coef-
ficient indicates disproporionate deviation for the varied condition on the extrapolation bands

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 190.91 125.03 259.31 1.00

conditVaried -20.58 -72.94 33.08 0.78

bandTypeExtrapolation 38.09 -6.94 83.63 0.95

conditVaried:bandTypeExtrapolation 82.00 41.89 121.31 1.00

Testing Accuracy. The analysis of testing accuracy examined deviations from the target

band as influenced by training condition (Varied vs. Constant) and band type (training vs. extrap-

olation bands). The results, summarized in Table 7, reveal no significant main effect of training

condition (𝛽 = -20.58, 95% CrI [-72.94, 33.08]; pd = 77.81%). However, the interaction between

training condition and band type was significant (𝛽 = 82, 95% CrI [41.89, 121.31]; pd = 100%), with

the varied group showing disproportionately larger deviations compared to the constant group

on the extrapolation bands (see Figure 10).
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Figure 10: A) Deviations from target band during testing without feedback stage. B) Estimated
marginal means for the interaction between training condition and band type. Error bars repre-
sent 95% confidence intervals.

Table 8: Experiment 2. Bayesian Mixed Model Predicting Vx as a function of condition (Constant
vs. Varied) and Velocity Band

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 362.64 274.85 450.02 1.00

conditVaried -8.56 -133.97 113.98 0.55

Band 0.71 0.58 0.84 1.00

condit*Band -0.06 -0.24 0.13 0.73

Testing Discrimination. Finally, to assess the ability of both conditions to discriminate be-

tween velocity bands, we fit a model predicting velocity as a function of training condition and

velocity band, with random intercepts and random slopes for each participant. The full model

results are shown in Table 9. The overall slope on target velocity band predictor was significantly
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positive, (𝛽 = 0.71, 95% CrI [0.58, 0.84]; pd= 100%), indicating that participants exhibited discrim-

ination between bands. The interaction between slope and condition was not significant, (𝛽 =

-0.06, 95% CrI [-0.24, 0.13]; pd= 72.67%), suggesting that the two conditions did not differ in their

ability to discriminate between bands (see Figure 11).
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Figure 11: E2 testing x velocities. Translucent bands with dash lines indicate the correct range for
each velocity band.
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Table 9
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(a) Conditional effect of training condition and Band. Ribbons indicate 95% HDI. The steepness of the lines
serves as an indicator of how well participants discriminated between velocity bands.

Experiment 2 Summary

Experiment 2 extended the findings of Experiment 1 by examining the effects of train-

ing variability on extrapolation performance in a visuomotor function learning task, but with

reversed training and testing bands. Similar to Experiment 1, the Varied group exhibited poorer
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performance during training and testing. However unlike experiment 1, the Varied group did not

show a significant difference in discrimination between bands.

Experiment 3

Methods & Procedure

The major adjustment of Experiment 3 is for participants to receive ordinal feedback dur-

ing training, in contrast to the continuous feedback of the prior experiments. After each training

throw, participants are informed whether a throw was too soft, too hard, or correct (i.e. within

the target velocity range). All other aspects of the task and design are identical to Experiments 1

and 2. We utilized the order of training and testing bands from both of the prior experiments, thus

assigning participants to both an order condition (Original or Reverse) and a training condition

(Constant or Varied). Participants were once again recruited from the online Indiana University

Introductory Psychology Course pool. Following exclusions, 195 participants were included in the

final analysis, n=51 in the Constant-Original condition, n=59 in the Constant-Reverse condition,

n=39 in the Varied-Original condition, and n=46 in the Varied-Reverse condition.

Results

Table 10: Experiment 3 - End of training performance. The Intercept represents the average of
the baseline (constant condition), and the conditVaried coefficient reflects the difference between
the constant and varied groups. A larger positive coefficient indicates a greater deviation (lower
accuracy) for the varied group.

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 121.86 109.24 134.60 1.00

conditVaried 64.93 36.99 90.80 1.00

bandOrderReverse 1.11 -16.02 18.16 0.55
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Term Estimate 95% CrI Lower 95% CrI Upper pd

conditVaried:bandOrderReverse -77.02 -114.16 -39.61 1.00

Training. Figure 13 displays the average deviations from the target band across training

blocks, and Table 10 shows the results of the Bayesian regression model predicting the deviation

from the common band at the end of training (600-800 for reversed order, and 800-1000 for

original order conditions). The main effect of training condition is significant, with the varied

condition showing larger deviations ( 𝛽 = 64.93, 95% CrI [36.99, 90.8]; pd = 100%). The main

effect of band order is not significant 𝛽 = 1.11, 95% CrI [-16.02, 18.16]; pd = 55.4%, however the

interaction between training condition and band order is significant, with the varied condition

showing greater accuracy in the reverse order condition ( 𝛽 = -77.02, 95% CrI [-114.16, -39.61]; pd

= 100%).
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Figure 13: E3. Deviations from target band during testing without feedback stage.
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Table 11: Experiment 3 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation), and the interaction between the two factors. Larger coefficient estimates indicate
larger deviations from the baselines (constant training; trained bands & original order) - and a
positive interaction coefficient indicates disproportionate deviation for the varied condition on
the extrapolation bands

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 288.65 199.45 374.07 1.00

conditVaried -40.19 -104.68 23.13 0.89

bandTypeExtrapolation -23.35 -57.28 10.35 0.92

bandOrderReverse -73.72 -136.69 -11.07 0.99

conditVaried:bandTypeExtrapolation 52.66 14.16 90.23 1.00

conditVaried:bandOrderReverse -37.48 -123.28 49.37 0.80

bandTypeExtrapolation:bandOrderReverse 80.69 30.01 130.93 1.00

conditVaried:bandTypeExtrapolation:bandOrderReverse30.42 -21.00 81.65 0.87

Testing Accuracy. Table 11 presents the results of the Bayesian mixed efects model pre-

dicting absolute deviation from the target band during the testing stage. There was no significant

main effect of training condition,𝛽 = -40.19, 95% CrI [-104.68, 23.13]; pd = 89.31%, or band type,𝛽

= -23.35, 95% CrI [-57.28, 10.35]; pd = 91.52%. However the effect of band order was significant,

with the reverse order condition showing lower deviations, 𝛽 = -73.72, 95% CrI [-136.69, -11.07];

pd = 98.89%. The interaction between training condition and band type was also significant 𝛽

= 52.66, 95% CrI [14.16, 90.23]; pd = 99.59%, with the varied condition showing disproprionately

large deviations on the extrapolation bands compared to the constant group. There was also a
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significant interaction between band type and band order, 𝛽 = 80.69, 95% CrI [30.01, 130.93]; pd

= 99.89%, such that the reverse order condition showed larger deviations on the extrapolation

bands. No other interactions were significant.
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Figure 14: Experiment 3 Testing Accuracy. A) Deviations from target band during testing without
feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing band type
(training vs. extrapolation) on testing accuracy. Error bars represent 95% confidence intervals.

Table 12: Experiment 3. BayesianMixedModel Predicting Vx as a function of condition (Constant
vs. Varied) and Velocity Band

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 601.83 504.75 699.42 1.00

conditVaried 12.18 -134.94 162.78 0.56

bandOrderReverse 13.03 -123.89 144.67 0.58

Band 0.49 0.36 0.62 1.00

conditVaried:bandOrderReverse -338.15 -541.44 -132.58 1.00
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Term Estimate 95% CrI Lower 95% CrI Upper pd

conditVaried:Band -0.04 -0.23 0.15 0.67

bandOrderReverse:bandInt -0.10 -0.27 0.08 0.86

conditVaried:bandOrderReverse:bandInt 0.42 0.17 0.70 1.00

Testing Discrimination. The full results of the discrimination model are presented in Ta-

ble 11. For the purposes of assessing group differences in discrimination, only the coefficients

including the band variable are of interest. The baseline effect of band represents the slope cof-

ficient for the constant training - original order condition, this effect was significant 𝛽 = 0.49,

95% CrI [0.36, 0.62]; pd = 100%. Neither of the two way interactions reached significance, 𝛽 =

-0.04, 95% CrI [-0.23, 0.15]; pd = 66.63%, 𝛽 = -0.1, 95% CrI [-0.27, 0.08]; pd = 86.35%. However, the

three way interaction between training condition, band order, and target band was significant,

𝛽 = 0.42, 95% CrI [0.17, 0.7]; pd = 99.96% - indicating that the varied condition showed a greater

slope coefficient on the reverse order bands, compared to the constant condition - this is clearly

shown in Figure 15, where the steepness of the best fitting line for the varied-reversed condition

is noticably steeper than the other conditions.
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Figure 15: e3 testing x velocities. Translucent bands with dash lines indicate the correct range for
each velocity band.
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Figure 16: Conditional effect of training condition and Band. Ribbons indicate 95% HDI. The
steepness of the lines serves as an indicator of how well participants discriminated between ve-
locity bands.
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Experiment 3 Summary

Computational Model
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Figure 17: The Associative Learning Model (ALM). The diagram illustrates the basic structure of
the ALM model as used in the present work. Input nodes are activated as a function of their
similarity to the lower-boundary of the target band. The generalization parameter, 𝑐, determines
the degree towhich nearby input nodes are activated. The output nodes are activated as a function
of the weighted sum of the input nodes - weights are updated via the delta rule.

Modeling Approach

Themodeling goal is to implement a full process model capable of both 1) producing novel

responses and 2) modeling behavior in both the learning and testing stages of the experiment.

For this purpose, we will apply the associative learning model (ALM) and the EXAM model of

function learning (DeLosh et al., 1997). ALM is a simple connectionist learning model which

closely resembles Kruschke’s ALCOVE model (Kruschke, 1992), with modifications to allow for

the generation of continuous responses.
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ALM & Exam Description

ALM is a localist neural network model (Page, 2000), with each input node corresponding

to a particular stimulus, and each output node corresponding to a particular response value. The

units in the input layer activate as a function of their Gaussian similarity to the input stimulus.

So, for example, an input stimulus of value 55 would induce maximal activation of the input unit

tuned to 55. Depending on the value of the generalization parameter, the nearby units (e.g. 54

and 56; 53 and 57) may also activate to some degree. ALM is structured with input and output

nodes that correspond to regions of the stimulus space, and response space, respectively. The

units in the input layer activate as a function of their similarity to a presented stimulus. As was

the case with the exemplar-based models, similarity in ALM is exponentially decaying function

of distance. The input layer is fully connected to the output layer, and the activation for any par-

ticular output node is simply the weighted sum of the connection weights between that node and

the input activations. The network then produces a response by taking the weighted average of

the output units (recall that each output unit has a value corresponding to a particular response).

During training, the network receives feedback which activates each output unit as a function of

its distance from the ideal level of activation necessary to produce the correct response. The con-

nection weights between input and output units are then updated via the standard delta learning

rule, where the magnitude of weight changes are controlled by a learning rate parameter. The

EXAM model is an extension of ALM, with the same learning rule and representational scheme

for input and output units. EXAM differs from ALM only in its response rule, as it includes a lin-

ear extrapolation mechanism for generating novel responses. Although this extrapolation rule

departs from a strictly similarity-based generalization mechanism, EXAM is distinct from pure
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rule-based models in that it remains constrained by the weights learned during training. EXAM

retrieves the two nearest training inputs, and the ALM responses associated with those inputs,

and computes the slope between these two points. The slope is then used to extrapolate the

response to the novel test stimulus. Because EXAM requires at least two input-output pairs to

generate a response, additional assumptions were required in order for it to generate resposnes

for the constant group. We assumed that participants come to the task with prior knowledge of

the origin point (0,0), which can serve as a reference point necessary for the model to generate

responses for the constant group. This assumption is motivated by previous function learning

research (Brown and Lacroix (2017)), which through a series of manipulations of the y intercept

of the underlying function, found that participants consistently demonstrated knowledge of, or

a bias towards, the origin point (see Kwantes and Neal (2006) for additional evidence of such a

bias in function learning tasks).

See Table 13 for a full specification of the equations that define ALM and EXAM, and

Figure 17 for a visual representation of the ALM model.

Model Fitting

To fit ALM and EXAM to our participant data, we employ a similar method to Mcdaniel

et al. (2009), wherein we examine the performance of each model after being fit to various sub-

sets of the data. Each model was fit to the data in with separate procedures: 1) fit to maximize

predictions of the testing data, 2) fit to maximize predictions of both the training and testing data,

3) fit to maximize predictions of the just the training data. We refer to this fitting manipulations

as “Fit Method” in the tables and figures below. It should be emphasized that for all three fit

methods, the ALM and EXAM models behave identically - with weights updating only during
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Table 13: ALM & EXAM Equations

ALM Response Generation

Input Activation 𝑎𝑖(𝑋) = 𝑒−𝑐(𝑋−𝑋𝑖)2

∑𝑀
𝑘=1 𝑒−𝑐(𝑋−𝑋𝑘)2

Input nodes activate as a
function of Gaussian similarity
to stimulus

Output Activation 𝑂𝑗(𝑋) = ∑𝑀
𝑘=1 𝑤𝑗𝑖 ⋅ 𝑎𝑖(𝑋) Output unit 𝑂𝑗 activation is the

weighted sum of input
activations and association
weights

Output Probability 𝑃[𝑌𝑗 |𝑋 ] = 𝑂𝑗(𝑋)
∑𝑀

𝑘=1 𝑂𝑘(𝑋) The response, 𝑌𝑗 probabilites
computed via Luce’s choice
rule

Mean Output 𝑚(𝑋) = ∑𝐿
𝑗=1 𝑌𝑗 ⋅ 𝑂𝑗(𝑥)

∑𝑀
𝑘=1 𝑂𝑘(𝑋) Weighted average of

probabilities determines
response to X

ALM Learning
Feedback 𝑓𝑗(𝑍) = 𝑒−𝑐(𝑍−𝑌𝑗)2 feedback signal Z computed as

similarity between ideal
response and observed
response

magnitude of error Δ𝑗𝑖 = (𝑓𝑗(𝑍) − 𝑜𝑗(𝑋))𝑎𝑖(𝑋) Delta rule to update weights.
Update Weights 𝑤𝑛𝑒𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂Δ𝑗𝑖 Updates scaled by learning rate

parameter 𝜂.
EXAM Extrapolation

Instance Retrieval 𝑃[𝑋𝑖|𝑋 ] = 𝑎𝑖(𝑋)
∑𝑀

𝑘=1 𝑎𝑘(𝑋) Novel test stimulus 𝑋 activates
input nodes 𝑋𝑖

Slope Computation 𝑆 = 𝑚(𝑋1)−𝑚(𝑋2)
𝑋1−𝑋2

Slope value, 𝑆 computed from
nearest training instances

Response 𝐸[𝑌 |𝑋𝑖] = 𝑚(𝑋𝑖) + 𝑆 ⋅ [𝑋 − 𝑋𝑖] ALM response 𝑚(𝑋𝑖) adjusted
by slope.
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the training phase.Models to were fit separately to the data of each individual participant. The

free parameters for both models are the generalization (𝑐) and learning rate (𝑙𝑟 ) parameters. Pa-

rameter estimation was performed using approximate bayesian computation (ABC), which we

describe in detail below.

Approximate Bayesian Computation

To estimate the parameters of ALM and EXAM, we used approximate bayesian computation

(ABC), enabling us to obtain an estimate of the posterior distribution of the generalization

and learning rate parameters for each individual. ABC belongs to the class of simulation-

based inference methods (Cranmer et al., 2020), which have begun being used for parameter

estimation in cognitive modeling relatively recently (Kangasrääsiö et al., 2019; Turner & Van

Zandt, 2012; Turner et al., 2016). Although they can be applied to any model from which

data can be simulated, ABCmethods aremost useful for complexmodels that lack an explicit

likelihood function (e.g. many neural network models).

The general ABC procedure is to 1) define a prior distribution over model parameters. 2)

sample candidate parameter values, 𝜃∗, from the prior. 3) Use 𝜃∗ to generate a simulated

dataset, 𝐷𝑎𝑡𝑎𝑠𝑖𝑚. 4) Compute a measure of discrepancy between the simulated and observed

datasets, 𝑑𝑖𝑠𝑐𝑟𝑒𝑝(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠). 5) Accept 𝜃∗ if the discrepancy is less than the tolerance

threshold, 𝜖, otherwise reject 𝜃∗. 6) Repeat until desired number of posterior samples are

obtained.

Although simple in the abstract, implementations of ABC require researchers to make a

number of non-trivial decisions as to i) the discrepancy function between observed and sim-

ulated data, ii) whether to compute the discrepancy between trial level data, or a summary
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statistic of the datasets, iii) the value of the minimum tolerance 𝜖 between simulated and

observed data. For the present work, we follow the guidelines from previously published

ABC tutorials (Farrell & Lewandowsky, 2018; Turner & Van Zandt, 2012). For the test stage,

we summarized datasets with mean velocity of each band in the observed dataset as 𝑉 (𝑘)
𝑜𝑏𝑠

and in the simulated dataset as 𝑉 (𝑘)
𝑠𝑖𝑚 , where 𝑘 represents each of the six velocity bands. For

computing the discrepancy between datasets in the training stage, we aggregated training

trials into three equally sized blocks (separately for each velocity band in the case of the var-

ied group). After obtaining the summary statistics of the simulated and observed datasets,

the discrepancy was computed as the mean of the absolute difference between simulated

and observed datasets (Equation 1 and Equation 2). For the models fit to both training and

testing data, discrepancies were computed for both stages, and then averaged together.

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑒𝑠𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
6

6
∑
𝑘=1

|𝑉 (𝑘)
𝑜𝑏𝑠 − 𝑉 (𝑘)

𝑠𝑖𝑚 | (1)

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

|𝑉 (𝑗)
𝑜𝑏𝑠,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑉 (𝑗)

𝑠𝑖𝑚,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 |

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑣𝑎𝑟 𝑖𝑒𝑑(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠 × 3

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

3
∑
𝑘=1

|𝑉 (𝑗,𝑘)
𝑜𝑏𝑠,𝑣𝑎𝑟 𝑖𝑒𝑑 − 𝑉 (𝑗,𝑘)

𝑠𝑖𝑚,𝑣𝑎𝑟 𝑖𝑒𝑑 |

(2)

The final component of our ABC implementation is the determination of an appropriate

value of 𝜖. The setting of 𝜖 exerts strong influence on the approximated posterior distribu-

tion. Smaller values of 𝜖 increase the rejection rate, and improve the fidelity of the approx-

imated posterior, while larger values result in an ABC sampler that simply reproduces the
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prior distribution. Because the individual participants in our dataset differed substantially

in terms of the noisiness of their data, we employed an adaptive tolerance setting strategy

to tailor 𝜖 to each individual. The initial value of 𝜖 was set to the overall standard devi-

ation of each individuals velocity values. Thus, sampled parameter values that generated

simulated data within a standard deviation of the observed data were accepted, while worse

performing parameters were rejected. After every 300 samples the tolerance was allowed

to increase only if the current acceptance rate of the algorithm was less than 1%. In such

cases, the tolerance was shifted towards the average discrepancy of the 5 best samples ob-

tained thus far. To ensure the acceptance rate did not become overly permissive, 𝜖 was also

allowed to decrease every time a sample was accepted into the posterior.

For each of the 156 participants from Experiment 1, the ABC algorithm was run until 200

samples of parameters were accepted into the posterior distribution. Obtaining this number of

posterior samples required an average of 205,000 simulation runs per participant. Fitting each

combination of participant, Model (EXAM & ALM), and fitting method (Test only, Train only,

Test & Train) required a total of 192 million simulation runs. To facilitate these intensive compu-

tational demands, we used the Future Package in R (Bengtsson, 2021), allowing us to parallelize

computations across a cluster of ten M1 iMacs, each with 8 cores.

Modelling Results

Group level Patterns.
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Table 14: Models errors predicting empirical data - aggregated over all participants, posterior
parameter values, and velocity bands. Note that Fit Method refers to the subset of the data that
the model was trained on, while Task Stage refers to the subset of the data that the model was
evaluated on.

ALM EXAM

Task Stage Fit Method Constant Varied Constant Varied

Test Fit to Test Data 199.93 103.36 104.01 85.68

Test Fit to Test & Training Data 216.97 170.28 127.94 144.86

Test Fit to Training Data 467.73 291.38 273.30 297.91

Train Fit to Test Data 297.82 2, 016.01 53.90 184.00

Train Fit to Test & Training Data 57.40 132.32 42.92 127.90

Train Fit to Training Data 51.77 103.48 51.43 107.03
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Figure 18: Posterior Distributions of 𝑐 and 𝑙𝑟 parameters. Points represent median values, thicker
intervals represent 66% credible intervals and thin intervals represent 95% credible intervals
around the median. Note that the y axes of the plots for the c parameter are scaled logarith-
mically.
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Figure 19: Model residuals for each combination of training condition, fit method, and model.
Residuals reflect the difference between observed and predicted values. Lower values indicate
better model fit. Note that y axes are scaled differently between facets. A) Residuals predicting
each block of the training data. B) Residuals predicting each band during the testing stage. Bolded
bars indicate bands that were trained, non-bold bars indicate extrapolation bands.
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The posterior distributions of the 𝑐 and 𝑙𝑟 parameters are shown Figure 18, and model

predictions are shown alongside the empirical data in Figure 20. Therewere substantial individual

differences in the posteriors of both parameters, with the within-group individual differences

generally swamped any between-group or between-model differences. The magnitude of these

individual differences remains even if we consider only the single best parameter set for each

subject.

We used the posterior distribution of 𝑐 and 𝑙𝑟 parameters to generate a posterior predictive

distribution of the observed data for each participant, which then allows us to compare the empir-

ical data to the full range of predictions from each model. Aggregated residuals are displayed in

Figure 19. The pattern of training stage residual errors are unsurprising across the combinations

of models and fitting method . Differences in training performance between ALM and EXAM

are generally minor (the two models have identical learning mechanisms). The differences in the

magnitude of residuals across the three fitting methods are also straightforward, with massive

errors for the ‘fit to Test Only’ model, and the smallest errors for the ‘fit to train only’ models.

It is also noteworthy that the residual errors are generally larger for the first block of training,

which is likely due to the initial values of the ALM weights being unconstrained by whatever

initial biases participants tend to bring to the task. Future work may explore the ability of the

models to capture more fine grained aspects of the learning trajectories. However for the present

purposes, our primary interest is in the ability of ALM and EXAM to account for the testing pat-

terns while being constrained, or not constrained, by the training data. All subsequent analyses

and discussion will thus focus on the testing stage.

The residuals of the model predictions for the testing stage (Figure 19) also show an un-

surprising pattern across fitting methods - with models fit only to the test data showing the best
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performance, followed by models fit to both training and test data, and with models fit only to

the training data showing the worst performance (note that y axes are scaled different between

plots). Although EXAM tends to perform better for both Constant and Varied participants (see

also Figure 21), the relative advantage of EXAM is generally larger for the Constant group - a

pattern consistent across all three fitting methods. The primary predictive difference between

ALM and EXAM is made clear in Figure 20, which directly compares the observed data against

the posterior predictive distributions for both models. Regardless of how the models are fit, only

EXAM can capture the pattern where participants are able to discriminate all 6 target bands.
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Figure 20: Empirical data and Model predictions for mean velocity across target bands. Fitting
methods (Test Only, Test & Train, Train Only) - are separated across rows, and Training Condition
(Constant vs. Varied) are separated by columns. Each facet contains the predictions of ALM and
EXAM, alongside the observed data.



VARIABILITY AND EXTRAPOLATION 43

120

140

160

180

Constant Varied

Condition

M
od

el
 E

rr
or

100

150

200

ALM EXAM

Model

100

150

200

ALM EXAM

Model

Constant

Varied

ALM Constant - ALM Varied

ALM Varied - EXAM Varied

EXAM Constant - EXAM Varied

-40 0 40 80

Model Error Difference

C
on

tr
as

t

Figure 21

To quantitatively assess whether the differences in performance between models, we fit a

bayesian regressions predicting the errors of the posterior predictions of each models as a func-

tion of the Model (ALM vs. EXAM) and training condition (Constant vs. Varied).

Model errors were significantly lower for EXAM (𝛽 = -37.54, 95% CrI [-60.4, -14.17], pd =

99.85%) than ALM. There was also a significant interaction between Model and Condition (𝛽 =

60.42, 95% CrI [36.17, 83.85], pd = 100%), indicating that the advantage of EXAM over ALM was

significantly greater for the constant group. To assess whether EXAM predicts constant perfor-

mance significantly better for Constant than for Varied subjects, we calculated the difference in
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model error between the Constant and Varied conditions specifically for EXAM. The results indi-

cated that the model error for EXAMwas significantly lower in the Constant condition compared

to the Varied condition, with a mean difference of -22.879 (95% CrI [-46.016, -0.968], pd = 0.981).

Table 15: Models errors predicting empirical data - aggregated over all participants, posterior
parameter values, and velocity bands. Note that Fit Method refers to the subset of the data that
the model was trained on, while Task Stage refers to the subset of the data that the model was
evaluated on.

E2 E3

ALM EXAM ALM EXAM

Task Stage Constant Varied Constant Varied Constant Varied Constant Varied

Fit to Test Data

Test 239.7 129.8 99.7 88.2 170.1 106.1 92.3 72.8

Train 53.1 527.1 108.1 169.3 70.9 543.5 157.8 212.7

Fit to Test & Training Data

Test 266.0 208.2 125.1 126.4 197.7 189.5 130.0 128.5

Train 40.0 35.4 30.4 23.6 49.1 85.6 49.2 78.4

Fit to Training Data

Test 357.4 295.9 305.1 234.5 415.0 298.8 295.5 243.7

Train 42.5 23.0 43.2 22.6 51.4 63.8 51.8 65.3
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Figure 22: Empirical data and Model predictions from Experiment 2 and 3 for the testing stage.
Observed data is shown on the right. Bolded bars indicate bands that were trained, non-bold bars
indicate extrapolation bands.

Table 16: Results of Bayesian Regression models predicting model error as a function of Model
(ALM vs. EXAM), Condition (Constant vs. Varied), and the interaction between Model and Con-
dition. The values represent the estimate coefficient for each term, with 95% credible intervals in
brackets. The intercept reflects the baseline of ALM and Constant. The other estimates indicate
deviations from the baseline for the EXAM mode and varied condition. Lower values indicate
better model fit.

Credible Interval

Experiment Term Estimate 95% CrI Lower 95% CrI Upper pd
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Experiment 1

Exp 1 Intercept 176.30 156.86 194.59 1.00

Exp 1 ModelEXAM −88.44 −104.51 −71.81 1.00

Exp 1 conditVaried −37.54 −60.40 −14.17 1.00

Exp 1 ModelEXAM:conditVaried 60.42 36.17 83.85 1.00

Experiment 2

Exp 2 Intercept 245.87 226.18 264.52 1.00

Exp 2 ModelEXAM −137.73 −160.20 −115.48 1.00

Exp 2 conditVaried −86.39 −113.52 −59.31 1.00

Exp 2 ModelEXAM:conditVaried 56.87 25.26 88.04 1.00

Experiment 3

Exp 3 Intercept 164.83 140.05 189.44 1.00

Exp 3 ModelEXAM −65.66 −85.97 −46.02 1.00

Exp 3 conditVaried −40.61 −75.90 −3.02 0.98

Exp 3 bandOrderReverse 25.47 −9.34 58.68 0.93

Exp 3 ModelEXAM:conditVaried 41.90 11.20 72.54 0.99

Exp 3 ModelEXAM:bandOrderReverse −7.32 −34.53 21.05 0.70

Exp 3 conditVaried:bandOrderReverse 30.82 −19.57 83.56 0.88

Exp 3 ModelEXAM:conditVaried:bandOrderReverse −60.60 −101.80 −18.66 1.00

Model Fits to Experiment 2 and 3. Data from Experiments 2 and 3 were fit to ALM and

EXAM in the same manner as Experiment1 . For brevity, we only plot and discuss the results
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of the “fit to training and testing data” models - results from the other fitting methods can be

found in the appendix. The model fitting results for Experiments 2 and 3 closely mirrored those

observed in Experiment 1. The Bayesian regression models predicting model error as a function

of Model (ALM vs. EXAM), Condition (Constant vs. Varied), and their interaction (see Table 16)

revealed a consistent main effect of Model across all three experiments. The negative coefficients

for the ModelEXAM term (Exp 2: 𝛽 = -86.39, 95% CrI -113.52, -59.31, pd = 100%; Exp 3: 𝛽 = -40.61,

95% CrI -75.9, -3.02, pd = 98.17%) indicate that EXAM outperformed ALM in both experiments.

Furthermore, the interaction between Model and Condition was significant in both Experiment

2 (𝛽 = 56.87, 95% CrI 25.26, 88.04, pd = 99.98%) and Experiment 3 (𝛽 = 41.9, 95% CrI 11.2, 72.54,

pd = 99.35%), suggesting that the superiority of EXAM over ALM was more pronounced for the

Constant group compared to the Varied group, as was the case in Experiment 1. Recall that Ex-

periment 3 included participants in both the original and reverse order conditions - and that this

manipulation interacted with the effect of training condition. We thus also controleld for band

order in our Bayesian Regression assessing the relative performance of EXAM and ALM in Ex-

periment 3. There was a significant three way interaction between Model, Training Condition,

and Band Order (𝛽 = -60.6, 95% CrI -101.8, -18.66, pd = 99.83%), indicating that the relative advan-

tage of EXAM over ALM was only more pronounced in the original order condition, and not the

reverse order condition (see Figure 23).
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Figure 23: Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Varied) on
Model Error for Experiment 2 and 3 data. Experiment 3 also includes a control for the order of
training vs. testing bands (original order vs. reverse order).

Computational Model Summary. Across the model fits to all three experiments, we found

greater support for EXAM over ALM (negative coefficients on the ModelEXAM term in Table 16),

and moreover that the constant participants were disproportionately well described by EXAM in

comparison to ALM (positive coefficients on ModelEXAM:conditVaried terms in Table 16). This

pattern is also clearly depicted in Figure 24, which plots the difference in model errors between

ALM and EXAM for each individual participant. Both varied and constant conditions have a

greater proportion of subjects better fit by EXAM (positive error differences), with the magnitude

of EXAM’s advantage visibly greater for the constant group. It also bears mention that numerous
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participants were better fit by ALM, or did not show a clear preference for either model. A subset

of these participants are shown in Figure 25.
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Figure 25: Model predictions alongside observed data for a subset of individual participants. A) 3
constant and 3 varied participants fit to both the test and training data. B) 3 constant and 3 varied
subjects fit to only the trainign data. Bolded bars indicate bands that were trained, non-bold bars
indicate extrapolation bands.

General Discussion

Experimental Result Summary

Across three experiments, we investigated the impact of training variability on learning

and extrapolation in a visuomotor function learning task. In Experiment 1, participants in the var-

ied training condition, who experienced a wider range of velocity bands during training, showed

lower accuracy at the end of training compared to those in the constant training condition.

Crucially, during the testing phase, the varied group exhibited significantly larger de-

viations from the target velocity bands, particularly for the extrapolation bands that were not
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encountered during training. The varied group also showed less discrimination between velocity

bands, as evidenced by shallower slopes when predicting response velocity from target velocity

band.

Experiment 2 extended these findings by reversing the order of the training and testing

bands. Similar to Experiment 1, the varied group demonstrated poorer performance during both

training and testing phases. However, unlike Experiment 1, the varied group did not show a

significant difference in discrimination between bands compared to the constant group.

In Experiment 3, we provided only ordinal feedback during training, in contrast to the

continuous feedback provided in the previous experiments. Participants were assigned to both

an order condition (original or reverse) and a training condition (constant or varied). The varied

condition showed larger deviations at the end of training, consistent with the previous exper-

iments. Interestingly, there was a significant interaction between training condition and band

order, with the varied condition showing greater accuracy in the reverse order condition. Dur-

ing testing, the varied group once again exhibited larger deviations, particularly for the extrap-

olation bands. The reverse order conditions showed smaller deviations compared to the original

order conditions. Discrimination between velocity bands was poorer for the varied group in the

original order condition, but not in the reverse order condition.

All three of our experiments yielded evidence that varied training conditions produced

less learning by the end of training, a pattern consistent with much of the previous research on

the influence of training variability (Catalano &Kleiner, 1984; Soderstrom&Bjork, 2015; Wrisberg

et al., 1987). The sole exception to this pattern was the reverse order condition in Experiment

3, where the varied group was not significantly worse than the constant group. Neither the

varied condition trained with the same reverse-order items in Experiment 2, nor the original-
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order varied condition trained with ordinal feedback in Experiment 3 were able to match the

performance of their complementary constant groups by the end of training, suggesting that

the relative success of the ordinal-reverse ordered varied group cannot be attributed to item or

feedback effects alone.

Our findings also diverge from the two previous studies to cleanly manipulate the vari-

ability of training items in a function learning task (DeLosh et al., 1997; van Dam & Ernst, 2015),

although the varied training condition of van Dam and Ernst (2015) also exhibited less learn-

ing, neither of these previous studies observed any difference between training conditions in

extrapolation to novel items. Like DeLosh et al. (1997) , our participants exhibited above chance

extrapolation/discrimination of novel items, however they observed no difference between any

of their three training conditions. A noteworthy difference difference between our studies is that

DeLosh et al. (1997) trained participants with either 8, 20, or 50 unique items (all receiving the

same total number of training trials). These larger sets of unique items, combined with the fact

that participants achieved near ceiling level performance by the end of training - may have made

it more difficult to observe any between-group differences of training variation in their study. van

Dam and Ernst (2015) ’s variability manipulation was more similar to our own, as they trained

participants with either 2 or 5 unique items. However, although the mapping between their input

stimuli and motor responses was technically linear, the input dimension was more complex than

our own, as it was defined by the degree of “spikiness” of the input shape. This entirely arbitrary

mapping also would have preculded any sense of a “0” point, which may partially explain why

neither of their training conditions were able to extrapolate linearly in the manner observed in

the current study or in DeLosh et al. (1997).



VARIABILITY AND EXTRAPOLATION 53

Modeling Summary EXAM is the best model for both groups, but EXAM does relatively

good at accounting for the constant group. May have seemed counterintuitive, if one assumed

that multiple, varied, examples were necessary to extract a rule. But, EXAM is not a conventional

rule model - it doesn’t require explictly abstract of a rule, but rather the rule-based response oc-

curs during retrieval. The constant groups formation of a single, accurate, input-output associa-

tion, in combination with the usefulness of the zero point, may have been sufficient for EXAM,

and the constant group, to perform well.

One concern may have been that the assumption of participants making use of the zero

point turned the extrapolation problem into an interpolation problem - however this concern is

ameliorated by the consistency of the results across both the original and reverse order conditions.

• why does Constant do better

– kind of task that permits for prior knowledge about 0

– learning - end of training

• what does it suggest that the constant group was disproportionately well explained by

the EXAM model?

•

Limitations - amount of training - constant group always having more experience at near-

est position

• constant group having more extrapolation items

• only training and extrapolation - no interpolation items - so harder tomake claims about

extrapolation specifically, as opposed to generalization in general.
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• no mechanism to account for sequence effects in models

• more rigorous model comparison to account for exams greater complexity

• knowledge of function

Comparison to Project 1

Differences between the tasks

There are a number of differences between Project 1’s Hit The Target (HTT), and Project

2’s Hit The Wall (HTW) tasks.

• Task Space Complexity: In HTW, the task space is also almost perfectly smooth, at least

for the continuous feedback subjects, if they throw 100 units too hard, they’ll be told

that they were 100 units too hard. Whereas in HTT, it was possible to produce xy

velocity combinations that were technically closer to the empirical solution space than

other throws, but which resulted in worse feedback due to striking the barrier.

• Perceptual Distinctiveness: HTT offers perceptually distinct varied conditions that di-

rectly relate to the task’s demands, which may increase the sallience between training

positions encounted by the varied group. In contrast, HTW’s varied conditions differ

only in the numerical values displayed, lacking the same level of perceptual differentia-

tion. Conversely in HTW, the only difference between conditions for the varied group

are the numbers displayed at the top of the screen which indicate the current target

band(e.g. 800-1000, or 1000-1200)

• In HTW, our primary testing stage of interest has no feedback, whereas in HTT testing

always included feedback (the intermittent testing in HTT expt 1 being the only excep-
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tion). Of course, we do collect testing with feedback data at the end of HTW, but we

haven’t focused on that data at all in our modelling work thus far. It’s also interesting to

recall that the gap between varied and constant in HTWdoes seem to close substantially

in the testing-with-feedback stage. The difference between no-feedback and feedback

testing might be relevant if the benefits of variation have anything to do with improving

subsequent learning (as opposed to subsequent immediate performance), OR if the ben-

efits of constant training rely on having the most useful anchor, having the most useful

anchor might be a lot less helpful if you’re getting feedback from novel positions and

can thus immediately begin to form position-specific anchors for the novelties, rather

than relying on a training anchor.

• HTW and HTT both have a similar amount of training trials (~200), and thus the con-

stant groups acquire a similar amount of experience with their single position/velocity

in both experiments. However, the varied conditions in both HTT experiments train on

2 positions, whereas the varied group in HTW trains on 3 velocity bands. This means

that in HTT the varied group gets half as much experience on any one position as the

constant group, and in HTW they only get 1/3 as much experience in any one position.

There are likely myriad ways in which this might impact the success of the varied group

regardless of how you think the benefits of variation might be occurring, e.g. maybe

they also need to develop a coherent anchor, maybe they need more experience in or-

der to extract a function, or more experience in order to properly learn to tune their c

parameter.
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