Combined Experiments

Thomas Gorman

2024-06-16

Paper Figures

Relevant figures from (Hu & Nosofsky, 2022, 2024) click on image to enlarge

2022 Paper

2024 Paper

Fixed Prototype Pilot

Comparison of Dot-Pattern Classification Studies

Note. Top panel: Experiment 1, bottom panel: Experiment 2. REP = repeating condition; NREP = nonrepeating condition. See the online article for the color version of this figure.

(a) 2022 Learning Curves

(a) 2022 Test Accuracy

Figure 8
Predictions of Classification-Transfer Accuracy From the Exemplar Model Across Different Parameter Variations in the Model (See
Main Text for Details)
Poet Eiting Desemptors
within low o low

Note. The settings of the low and high values for each of the model parameters are described in the main text. REP = repeating condition; NREP = nonrepeating condition. See the online article for the color version of this figure.

(a) 2022 Model Predictions

Fig. 2 Mean proportion of correct classifications during the training phase as a function of training condition (low, medium, high, mixed) and training block. Error bars are one standard error of the mean

(a) 2024 Learning Curves

Fig. 3 Mean proportion of correct classifications during the test phase as a function of pattern type and training condition. newlow = new led distortions, newmed = new medium distortions, newhigh = new high distortions

(a) 2024 Test Accuracy

Fig.4 Mean proportion of correct classifications during the test phase as a function of pattern type and training condition, broken down by overall subject-performance quartiles

(a) 2024 Test Accuracy - Quartile

[1] 8

Training & Testing shown together

- These plots show mean performance at the start, middle and end of training (first 3 points), and the testing performance for each item type (final 5 points).
- The pilot study included "special" patterns, that were predicted to be more difficult.

 $click \ on \ plots \ to \ enlarge$

Study	Hu & Nosofsky (2022)	Hu & Nosofsky (2024)	Fixed Prototype Pilot Study		
Publication	JEP: Learning, Memory, and Cognition	Memory & Cognition	(unpublished pilot study)		
Participants	- 89 Indiana University undergraduates- Course credit participation- Random assignment to conditions (REP or NREP)- Normal or corrected vision	- 304 Indiana University students- Random assignment to conditions (low, medium, high, or mixed distortion)	146 IU Students		
Training Stage	Training Stage	Training Stage	Training Stage		
• Procedure	- REP Condition: 15 unique patterns (5 per category), repeated across 15 blocks (225 trials total)- NREP Condition: 75 unique patterns (5 per category per block), no repetitions (225 trials total)	- 10 blocks, 27 trials each (270 trials total)- Different set of training patterns in each block- Corrective feedback for 2 seconds after each response	- Training patterns repeated across 10 blocks with randomized presentation order within each block- Four between-subject conditions: low, medium, high, and mixed distortion levels		
• Stimuli	- 15 or 75 unique dot patterns (depending on condition)- Created using Posner (1967) procedure	- 270 unique training patterns	- 27 unique dot patterns (9 per category)		
Testing Stage	Transfer Phase	Testing Stage	Testing Stage		
• Procedure	- 63 trials total- Random order of presentation	- 84 trials total- Random order of presentation	- 87 trials total- Random order of presentation		
• Stimuli	- 15 old distortions (5 per category)- 3 prototypes (one per category)- 15 low-level distortions (5 per category)- 15 new medium-level distortions (5 per category)- 15 high-level distortions (5 per category)	- 27 old patterns from the training phase (9 per category)- 3 prototypes (one per category)- 9 new low-level distortions (3 per category)- 18 new medium-level distortions (6 per category)- 27 new high-level distortions (9 per category)	- 27 old distortions (9 per category)- 3 prototypes (1 per category)- 9 new low-level distortions (3 per category)- 18		

Notes:

- **REP:** Repeating Protocol
- NREP: Nonrepeating Protocol
- Hu & Nosofsky (2022) investigated the effects of repeating vs. nonrepeating training patterns on category learning ization.
- Hu & Nosofsky (2024) examined the impact of different training distortion levels on category learning and generali subject has unique prototype set.
- Fixed Prototype Pilot Study examined the impact of different training distortion levels on category learning and gern Fixed set of prototypes across all subjects.
- All studies used a dot pattern categorization paradigm where participants learned to classify patterns into categories ba similarity.
- Dot pattern distortions were created using a modified Posner-Keele (1968) procedure. Low, medium and high distortion the dots by an average of 4, 6, and 7.7 Posner-levels respectively.

Training & Testing Performance

Training binned into 3 stages, and Testing Performance for each Item Type

Training & Testing Performance – Quartiles

Training binned into 3 stages, and Testing Performance for each Item Type Split into 4 quartiles based on end of training performance (1=worst; 4=best)

Test Stage Comparisons

Facet by experiment

Testing Performance

Facet by item type

Testing Performance

Facet by train group

Testing Performance

Study 🔶 Hu & Nosofsky 2022 🔶 Hu & Nosofsky 2024 🔶 Fixed Prototype Pilot

Training Stage Comparisons

Facet by Exp

Training – All Sbjs. Training accuracy – 10 bins

 $click \ on \ plots \ to \ enlarge$

Original Blocks

- Hu & Nosofsky 2022 had 15 blocks of 15 trials each 225 trials total
- Hu & Nosofsky 2024 & Fixed Prototype pilot each had 10 blocks of 27 trials each 270 trials total

Training – individual learning curves.

Training accuracy – each line is an individual sbj. Black lines are group averages

Training Performance – All Sbjs.

Bin into equal sized blocks

Training Performance – All Sbjs.

Testing Phase Performance Summary Mean (SE) for Each Item Type and Condition

Condition	Experiment	Phase	Old	Prototype	New Low	New Medium	New High
nrep	Hu & Nosofsky 2022	Test	0.84(0.03)	$0.91 \ (0.037)$	0.86(0.029)	$0.82 \ (0.028)$	0.72(0.031)
rep	Hu & Nosofsky 2022	Test	$0.91 \ (0.027)$	$0.91 \ (0.028)$	$0.88 \ (0.029)$	0.82(0.028)	0.73 (0.028)
low	Hu & Nosofsky 2024	Test	$0.86 \ (0.019)$	$0.93 \ (0.022)$	$0.87 \ (0.021)$	$0.77 \ (0.019)$	0.64 (0.015)
medium	Hu & Nosofsky 2024	Test	0.7 (0.021)	0.79(0.032)	$0.75 \ (0.027)$	0.69(0.024)	0.63(0.021)
mixed	Hu & Nosofsky 2024	Test	$0.7 \ (0.026)$	$0.81 \ (0.031)$	$0.76\ (0.029)$	$0.7 \ (0.025)$	0.59(0.022)
high	Hu & Nosofsky 2024	Test	$0.53\ (0.021)$	$0.64\ (0.036)$	$0.64 \ (0.029)$	$0.59\ (0.028)$	$0.51 \ (0.021)$
low	Fixed Prototype Pilot	Test	$0.86 \ (0.027)$	$0.87 \ (0.054)$	$0.83 \ (0.04)$	0.7 (0.023)	$0.53 \ (0.02)$
medium	Fixed Prototype Pilot	Test	0.64(0.02)	0.72(0.032)	$0.71 \ (0.029)$	0.56(0.018)	0.46(0.014)
mixed	Fixed Prototype Pilot	Test	$0.64 \ (0.025)$	0.75(0.061)	$0.67 \ (0.046)$	$0.55 \ (0.032)$	0.44(0.021)
high	Fixed Prototype Pilot	Test	$0.53\ (0.03)$	$0.47 \ (0.048)$	$0.41 \ (0.03)$	$0.45 \ (0.025)$	0.4(0.021)

For each experiment, the row with the highest value for each item type is bolded

References

- Hu, M., & Nosofsky, R. M. (2022). Exemplar-model account of categorization and recognition when training instances never repeat. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1947–1969. https://doi.org/10.1037/xlm0001008
- Hu, M., & Nosofsky, R. M. (2024). High-variability training does not enhance generalization in the prototype-distortion paradigm. *Memory & Cognition*. https://doi.org/10.3758/s13421-023-01516-1