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Abstract

In this prospective observational study, we investigate the role of transactive memory and speaking up in human-
AT teams comprising 180 intensive care (ICU) physicians and nurses working with AI in a simulated clinical
environment. Our findings indicate that interactions with Al agents differ significantly from human interactions,
as accessing information from Al agents is positively linked to a team’s ability to generate novel hypotheses and
demonstrate speaking-up behavior, but only in higher-performing teams. Conversely, accessing information from
human team members is negatively associated with these aspects, regardless of team performance. This study is
a valuable contribution to the expanding field of research on human-Al teams and team science in general, as it
emphasizes the necessity of incorporating Al agents as knowledge sources in a team’s transactive memory system,
as well as highlighting their role as catalysts for speaking up. Practical implications include suggestions for the

design of future Al systems and human-Al team training in healthcare and beyond.
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FIGURE 1
Visualization of TMS and speaking up interactions in human-Al teams.

Figure 1: Bienefeld et al. (2023)
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Abstract

The comprehensive review synthesizes 64 empirical studies on communication and transactive memory systems
(TMS). The results reveal that (a) a TMS forms through communication about expertise; (b) as a TMS develops,
communication to allocate information and coordinate retrieval increases, promoting information exchange; and
(c) groups update their TMS through communicative learning. However, direct interpersonal communication is

not necessary for TMS development or utilization. Nor do high-quality information-sharing processes always occur



within developed TMS structures. For future research, we propose a multidimensional network approach to TMS
that incorporates technologies, addresses member characteristics, considers multiple communication types, and

situates groups in context.
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Abstract

Research on linguistic interaction suggests that two or more individuals can sometimes form adaptive and cohesive
systems. We describe an “alignment system” as a loosely interconnected set of cognitive processes that facilitate
social interactions. As a dynamic, multi-component system, it is responsive to higher-level cognitive states such
as shared beliefs and intentions (those involving collective intentionality) but can also give rise to such shared
cognitive states via bottom-up processes. As an example of putative group cognition we turn to transactive
memory and suggest how further research on alignment in these cases might reveal how such systems can be
genuinely described as cognitive. Finally, we address a prominent critique of collective cognitive systems, arguing
that there is much empirical and explanatory benefit to be gained from considering the possibility of group cognitive

systems, especially in the context of small-group human interaction.
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Abstract

What do we want from machine intelligence? We envision machines that are not just tools for thought, but
partners in thought: reasonable, insightful, knowledgeable, reliable, and trustworthy systems that think with us.
Current artificial intelligence (AI) systems satisfy some of these criteria, some of the time. In this Perspective, we
show how the science of collaborative cognition can be put to work to engineer systems that really can be called
“thought partners,” systems built to meet our expectations and complement our limitations. We lay out several
modes of collaborative thought in which humans and Al thought partners can engage and propose desiderata for
human-compatible thought partnerships. Drawing on motifs from computational cognitive science, we motivate
an alternative scaling path for the design of thought partners and ecosystems around their use through a Bayesian

lens, whereby the partners we construct actively build and reason over models of the human and world.
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Figure 1: Examples of ecosystems for thinking. Humans have long thought together. Machines
expanded the efficiency of human thinking. Now, machines — powered by Al — open up new realms of

computational thought partnership with humans.
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Fig. 2| Case study depictions. a, WatChat infers the user’s buggy mental model
of the programming environmentand interactively helps to "patch’ bugs in
their understanding. b, CLIPS reasons explicitly about agents’ goals, integrating
(culinary) world knowledge and the human’s utterances to infer appropriate
actions. Both agents reason about the joint team plan (tomato and dough are
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Figure 2: Figures from Collins et al. (2024)



Task Allocation in Teams as a Multi-Armed Bandit.

Marjieh, R., Gokhale, A., Bullo, F., & Griffiths, T. L. (2024). Task Allocation in Teams as a Multi-Armed
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Abstract

Humans rely on efficient distribution of resources to transcend the abilities of individuals. Successful task allo-
cation, whether in small teams or across large institutions, depends on individuals’ ability to discern their own
and others’ strengths and weaknesses, and to optimally act on them. This dependence creates a tension between
exploring the capabilities of others and exploiting the knowledge acquired so far, which can be challenging. How
do people navigate this tension? To address this question, we propose a novel task allocation paradigm in which a
human agent is asked to repeatedly allocate tasks in three distinct classes (categorizing a blurry image, detecting
a noisy voice command, and solving an anagram) between themselves and two other (bot) team members to max-
imize team performance. We show that this problem can be recast as a combinatorial multi-armed bandit which
allows us to compare people’s performance against two well-known strategies, Thompson Sampling and Upper
Confidence Bound (UCB). We find that humans are able to successfully integrate information about the capabili-
ties of different team members to infer optimal allocations, and in some cases perform on par with these optimal

strategies. Our approach opens up new avenues for studying the mechanisms underlying collective cooperation in

teams.
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Figure 1: Task Allocation Paradigm. (A) Schematic of the task. (B) Example human allocation dynamics.

Figure 3: Figure from Marjieh et al. (2024)
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Envisioning: Cognitive Design Challenges in LLM Interfaces (arXiv:2309.14459; Version 2). arXiv.
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Abstract

Large language models (LLMs) exhibit dynamic capabilities and appear to comprehend complex and ambiguous

natural language prompts. However, calibrating LLM interactions is challenging for interface designers and end-

users alike. A central issue is our limited grasp of how human cognitive processes begin with a goal and form

intentions for executing actions, a blindspot even in established interaction models such as Norman’s gulfs of

execution and evaluation. To address this gap, we theorize how end-users ‘envision’ translating their goals into

clear intentions and craft prompts to obtain the desired LLM response. We define a process of Envisioning by

highlighting three misalignments: (1) knowing whether LLMs can accomplish the task, (2) how to instruct the

LLM to do the task, and (3) how to evaluate the success of the LLM’s output in meeting the goal. Finally, we

make recommendations to narrow the envisioning gulf in human-LLM interactions.
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Figure 3: In the context of Norman’s seven-stage model action, we highlight what is missing during human-LLM interactions.
Further, there are three pathways to interactions: (1) directly state their goal to the LLM, (2) formulate their intentions and
provide them to the model through prompt engineering, and (3) take the LLM output and transition to a dedicated interface
and system (e.g., switching from ChatGPT to a Word Processor based on an LLM generated draft).
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