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Abstract

People supported by Al-powered decision support tools frequently overrely on the Al: they accept an Al’s sug-
gestion even when that suggestion is wrong. Adding explanations to the Al decisions does not appear to reduce
the overreliance and some studies suggest that it might even increase it. Informed by the dual-process theory of
cognition, we posit that people rarely engage analytically with each individual Al recommendation and explana-
tion, and instead develop general heuristics about whether and when to follow the Al suggestions. Building on
prior research on medical decision-making, we designed three cognitive forcing interventions to compel people to
engage more thoughtfully with the Al-generated explanations. We conducted an experiment (N=199), in which we
compared our three cognitive forcing designs to two simple explainable Al approaches and to a no-Al baseline. The
results demonstrate that cognitive forcing significantly reduced overreliance compared to the simple explainable Al
approaches. However, there was a trade-off: people assigned the least favorable subjective ratings to the designs
that reduced the overreliance the most. To audit our work for intervention-generated inequalities, we investigated
whether our interventions benefited equally people with different levels of Need for Cognition (i.e., motivation to
engage in effortful mental activities). Our results show that, on average, cognitive forcing interventions benefited
participants higher in Need for Cognition more. Our research suggests that human cognitive motivation moderates

the effectiveness of explainable Al solutions.



Turn this plate of food into a low carb meal

By replacing one of the ingredients, your goal is to make this meal a low carb meal while keeping its original flavor (as much as possible).

Al's suggestion
The Al suggested replacing beans with the following top 4 options by

optimizing for flavor and nutrition goal:

green beans
B5.

green zucchin

musshiro o

B

iomata

h -
B
B
B
g
g

8

For

100%

E

20 i &%
1 carb reduction [ flaver similarity

The main ingredients on this plate are:
chicken, beans, cherry tomata, spinach
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(a) explanation (SXAI)
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The Al is 87% confident in its suggestion See Al's suggestion Vv

The Al is processing the image

(b) uncertainty (SXAI) (c) on demand (CFF) (d) wait (CFF)

Fig. 1. Multiple conditions. (a) depicts the main interface with the explanation condition, where the ingredients
are recognized correctly and an explanation is provided for top replacements. In uncertainty condition (b)
participants were shown Al's confidence along with the explanation. In on demand condition (c) participants
could click to see the Al's suggestion and explanation, whereas in wait condition (d) they were shown a
message “Al is processing the image” for 30 seconds before the suggestion and explanation were presented to
them.

Figure 1: Figure from Buginca et al. (2021)

(Ir)rationality and cognitive biases in large language models.

Macmillan-Scott, O., & Musolesi, M. (2024). (Ir)rationality and cognitive biases in large language models

Royal Society Open Science, 11(6), 240255. https://doi.org/10.1098 /rso0s.240255



Abstract

Do large language models (LLMs) display rational reasoning? LLMs have been shown to contain human biases
due to the data they have been trained on; whether this is reflected in rational reasoning remains less clear. In
this paper, we answer this question by evaluating seven language models using tasks from the cognitive psychology
literature. We find that, like humans, LLMs display irrationality in these tasks. However, the way this irrationality
is displayed does not reflect that shown by humans. When incorrect answers are given by LLMs to these tasks, they
are often incorrect in ways that differ from human-like biases. On top of this, the LLMs reveal an additional layer
of irrationality in the significant inconsistency of the responses. Aside from the experimental results, this paper
seeks to make a methodological contribution by showing how we can assess and compare different capabilities of

these types of models, in this case with respect to rational reasoning.

Table 1. List of tasks and the cognitive biases they were designed to exemplify. correct versus human-like responses
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generally meant that the models refused to provide a response due to ethical concerns. Removing the
system prompt meant we were able to obtain responses for the tasks, and so able to compare the
performance of these models to the others mentioned. As we will discuss below, the 70 billion Figure 6. Proportion of correct versus human-like responses across all tasks for each language model. Correct responses indude
parameter version had no default system prompt, but gave very similar responses to the 7 and 13 those with correct (logical) reasoning, as well as those with incorrect (illogical) reasoning that reached the correct answer.
billion parameter versions with the prompt included, meaning we often obtained no response from Human-like responses include those that are correct with logical reasoning, and those that are incorrect but are achieved
this larger version of the model. through a studied human cognitive bias.
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Figure 2: Figures from Macmillan-Scott & Musolesi (2024)

Human-like intuitive behavior and reasoning biases emerged in large language models but

disappeared in ChatGPT

Hagendorff, T., Fabi, S., & Kosinski, M. (2023). Human-like intuitive behavior and reasoning biases
emerged in large language models but disappeared in ChatGPT. Nature Computational Science, 3(10),
833-838. https://doi.org/10.1038/s43588-023-00527-x

Abstract

We design a battery of semantic illusions and cognitive reflection tests, aimed to elicit intuitive yet erroneous
responses. We administer these tasks, traditionally used to study reasoning and decision-making in humans, to
OpenAl’s generative pre-trained transformer model family. The results show that as the models expand in size
and linguistic proficiency they increasingly display human-like intuitive system 1 thinking and associated cognitive
errors. This pattern shifts notably with the introduction of ChatGPT models, which tend to respond correctly,
avoiding the traps embedded in the tasks. Both ChatGPT-3.5 and 4 utilize the input—output context window to



engage in chain-of-thought reasoning, reminiscent of how people use notepads to support their system 2 thinking.
Yet, they remain accurate even when prevented from engaging in chain-of-thought reasoning, indicating that their
system-1-like next-word generation processes are more accurate than those of older models. Our findings highlight
the value of applying psychological methodologies to study large language models, as this can uncover previously

undetected emergent characteristics.

a egend._example tas My
CRT Type 3 task 14: In a cave, there is a colony of bats with a daily population

doubling. Given that it takes 60 days for the entire cave to be filled with bats, how many
days would it take for the cave to be half-filled with bats?

- Correct responses (e.g., ChatGPT-4: “59 days")
- Intuitive responses (e.g., GPT-3-davinci-003: 30 days")
- Atypical responses (e.g., GPT-1: “a lot")

Chain-of-thought responses (e.g., ChatGPT-3.5:

“If the population deubles every day, then the number of bats in the cave after n days is
2*n times the original population. Let P be the original pepulation of the colony. After 60
days, the population is 2760 * P, which is the capacity of the cave. To find the number

of days it takes for the cave to be half-filled with bats, we need to find the value of n
such that the population is half of the capacity of the cave.

bwmamammakﬂ

€ (Chain-of-thought reasoning)

“Let’s use algebra to solve this problem.”

“Shortest possible answer.”
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Fig.1|Human and LLM performance on the CRT tasks. a, Exemplary
responses to one of the CRT tasks, categorized as correct, intuitive
(butincorrect) and atypical (that is, all other incorrect responses).
Within each category, the responses that were preceded by written chain-
of-thought reasoning were additionally labeled as ‘chain-of-thought

0.5+2%60*P=2%n*P GPT-3-davinci-003 _ responses’. b, Human and LLM performance on 150 CRT tasks. ¢, LLMs’
Dividing both sides by P, we get: 0.5 * 260 = 2"n responses when instructed to engage or prevented from engaging in
Taking the logarithm base 2 of both sides,we get: n = 60 + [0g2(0.5) = 60-1 = 59. h P f-though N h gdag P fileinclud 828 grd
Therefore, it would take 59 days for the cave to be half-filled with bats.") ChatGPT-3.5 _ chain-of-thought reasoning. The data source file includes 95% confidence
intervals.
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Figure 3: Figures from Hagendorff et al. (2023)

Using cognitive psychology to understand GPT-3.

Binz, M., & Schulz, E. (2023). Using cognitive psychology to understand GPT-3. Proceedings of the
National Academy of Sciences, 120(6), €2218523120. https://doi.org/10.1073/pnas.2218523120

Abstract

We study GPT-3, a recent large language model, using tools from cognitive psychology. More specifically, we assess
GPT-3’s decision-making, information search, deliberation, and causal reasoning abilities on a battery of canonical
experiments from the literature. We find that much of GPT-3’s behavior is impressive: It solves vignette-based
tasks similarly or better than human subjects, is able to make decent decisions from descriptions, outperforms
humans in a multiarmed bandit task, and shows signatures of model-based reinforcement learning. Yet, we also
find that small perturbations to vignette-based tasks can lead GPT-3 vastly astray, that it shows no signatures of
directed exploration, and that it fails miserably in a causal reasoning task. Taken together, these results enrich
our understanding of current large language models and pave the way for future investigations using tools from

cognitive psychology to study increasingly capable and opaque artificial agents.
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Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrim-

ination and social justice, and also participated in anti-nuclear demonstra-
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Fig. 1. Vignette-based tasks. () Example prompt of a hypothetical scenario, in this case, the famous Linda problem, as submitted to GPT-3. (B) Results. While
in 12 out 12 standard vignettes, GPT-3 answers either correctly or makes human-like mistakes, it makes mistakes that are not human-like when given the
adversarial vignettes.

Figure 4: Figure from Binz & Schulz (2023)

Studying and improving reasoning in humans and machines.

Yax, N., Anllg, H., & Palminteri, S. (2024). Studying and improving reasoning in humans and machines.

Communications Psychology, 2(1), 1-16. https://doi.org/10.1038/s44271-024-00091-8

Abstract

In the present study, we investigate and compare reasoning in large language models (LLMs) and humans, using a
selection of cognitive psychology tools traditionally dedicated to the study of (bounded) rationality. We presented
to human participants and an array of pretrained LLMs new variants of classical cognitive experiments, and cross-
compared their performances. Our results showed that most of the included models presented reasoning errors
akin to those frequently ascribed to error-prone, heuristic-based human reasoning. Notwithstanding this superficial
similarity, an in-depth comparison between humans and LLMs indicated important differences with human-like
reasoning, with models’ limitations disappearing almost entirely in more recent LLMs’ releases. Moreover, we
show that while it is possible to devise strategies to induce better performance, humans and machines are not
equally responsive to the same prompting schemes. We conclude by discussing the epistemological implications

and challenges of comparing human and machine behavior for both artificial intelligence and cognitive psychology.
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Figure 5: Figure from Yax et al. (2024)

Exploring variability in risk taking with large language models.

Bhatia, S. (2024). Exploring variability in risk taking with large language models. Journal of Experi-
mental Psychology: General, 153(7), 1838-1860. https://doi.org/10.1037/xge0001607

Abstract

What are the sources of individual-level differences in risk taking, and how do they depend on the domain or
situation in which the decision is being made? Psychologists currently answer such questions with psychometric
methods, which analyze correlations across participant responses in survey data sets. In this article, we analyze
the preferences that give rise to these correlations. Our approach uses (a) large language models (LLMs) to
quantify everyday risky behaviors in terms of the attributes or reasons that may describe those behaviors, and
(b) decision models to map these attributes and reasons onto participant responses. We show that LLM-based
decision models can explain observed correlations between behaviors in terms of the reasons different behaviors
elicit and explain observed correlations between individuals in terms of the weights different individuals place on
reasons, thereby providing a decision theoretic foundation for psychometric findings. Since LLMs can generate
quantitative representations for nearly any naturalistic decision, they can be used to make accurate out-of-sample

predictions for hundreds of everyday behaviors, predict the reasons why people may or may not want to engage in



these behaviors, and interpret these reasons in terms of core psychological constructs. Our approach has important

theoretical and practical implications for the study of heterogeneity in everyday behavior.

Bhatia (2024)

Human Bias in AI Models? Anchoring Effects and Mitigation Strategies in Large Language
Models

Nguyen, J. (2024). Human Bias in AI Models? Anchoring Effects and Mitigation Strategies in Large
Language Models. Journal of Behavioral and Experimental Finance, 100971. https://doi.org/10.1016/j.jbef.2024.100971

Abstract

This study builds on the seminal work of Tversky and Kahneman (1974), exploring the presence and extent of
anchoring bias in forecasts generated by four Large Language Models (LLMs): GPT-4, Claude 2, Gemini Pro and
GPT-3.5. In contrast to recent findings of advanced reasoning capabilities in LLMs, our randomised controlled
trials reveal the presence of anchoring bias across all models: forecasts are significantly influenced by prior mention
of high or low values. We examine two mitigation prompting strategies, ‘Chain of Thought’ and ‘ignore previous’,
finding limited and varying degrees of effectiveness. Our results extend the anchoring bias research in finance
beyond human decision-making to encompass LLMs, highlighting the importance of deliberate and informed

prompting in Al forecasting in both ad hoc LLM use and in crafting few-shot examples.
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Fig. 2. Flowchart of experimental procedure.

Figure 6: Figure from Nguyen (2024)



A Turing test of whether AI chatbots are behaviorally similar to humans

Mei, Q., Xie, Y., Yuan, W., & Jackson, M. O. (2024). A Turing test of whether AI chatbots are
behaviorally similar to humans. Proceedings of the National Academy of Sciences, 121(9), €2313925121.
https://doi.org/10.1073 /pnas.2313925121

Abstract

We administer a Turing test to Al chatbots. We examine how chatbots behave in a suite of classic behavioral
games that are designed to elicit characteristics such as trust, fairness, risk-aversion, cooperation, etc., as well
as how they respond to a traditional Big-5 psychological survey that measures personality traits. ChatGPT-4
exhibits behavioral and personality traits that are statistically indistinguishable from a random human from tens
of thousands of human subjects from more than 50 countries. Chatbots also modify their behavior based on
previous experience and contexts “as if” they were learning from the interactions and change their behavior in
response to different framings of the same strategic situation. Their behaviors are often distinct from average and
modal human behaviors, in which case they tend to behave on the more altruistic and cooperative end of the

distribution. We estimate that they act as if they are maximizing an average of their own and partner’s payoffs.
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Fig. 2. The Turing test. We compare a random play of Player A (ChatGPT-4, ChatGPT-3, or a human player, respectively) and a random play of a second Player
B (which is sampled randomly from the human population). We compare which action is more typical of the human distribution: which one would be more
likely under the human distribution of play. The green bar indicates how frequently Player A's action is more likely under the human distribution than Player
B's action, while the red bar is the reverse, and the yellow indicates that they are equally likely (usually the same action). (A): average across all games; (B-/):
results in individual games. ChatGPT-4 is picked as more likely to be human more often than humans in 5/8 of the games, and on average across all games.
ChatGPT-3 is picked as or more likely to be human more often than humans in 2/8 of the games and not on average.

Figure 7: Figure from Mei et al. (2024)

Deciding Fast and Slow: The Role of Cognitive Biases in Al-assisted Decision-making

Rastogi, C., Zhang, Y., Wei, D., Varshney, K. R., Dhurandhar, A., & Tomsett, R. (2022). Deciding Fast

and Slow: The Role of Cognitive Biases in AlI-assisted Decision-making. Proceedings of the ACM on



Human-Computer Interaction, 6(CSCW1), 1-22. https://doi.org/10.1145/3512930
Abstract

Several strands of research have aimed to bridge the gap between artificial intelligence (AI) and human decision-
makers in Al-assisted decision-making, where humans are the consumers of Al model predictions and the ultimate
decision-makers in high-stakes applications. However, people’s perception and understanding are often distorted
by their cognitive biases, such as confirmation bias, anchoring bias, availability bias, to name a few. In this work,
we use knowledge from the field of cognitive science to account for cognitive biases in the human-Al collabora-
tive decision-making setting, and mitigate their negative effects on collaborative performance. To this end, we
mathematically model cognitive biases and provide a general framework through which researchers and practi-
tioners can understand the interplay between cognitive biases and human-ATI accuracy. We then focus specifically
on anchoring bias, a bias commonly encountered in human-Al collaboration. We implement a time-based de-
anchoring strategy and conduct our first user experiment that validates its effectiveness in human-Al collaborative
decision-making. With this result, we design a time allocation strategy for a resource-constrained setting that
achieves optimal human-Al collaboration under some assumptions. We, then, conduct a second user experiment
which shows that our time allocation strategy with explanation can effectively de-anchor the human and improve

collaborative performance when the Al model has low confidence and is incorrect.

Empirical Tests .
Observed Space mpirical Teste, Prediction Space
Confirmation bias, Anchoring bias,
availabilty bias, automation bias,
representativeness heuristic weak evidence effect

Perceived Space

1.0

Accuracy

/ i —-- Human

s i = Human+Al
Fig. 1. Three constituent spaces to capture different interactions in human-Al collaboration. The interactions 00— [ ——
of the perceived space, representing the human decision-maker, with the observed space and the prediction Al Confidence
space may lead to cognitive biases. The definition of the different spaces is partially based on ideas of Yeom
and Tschantz [57]. Fig. 3. An ideal case for human-Al collaboration, where (1) we correctly identify the set of tasks with low

and high Al confidence, (2) the Al accuracy is perfectly correlated with its confidence, (3) human accuracy is
higher than Al in the low confidence region, Cr, and lower than Al in the high confidence region Cg.

Figure 8: Figures from Rastogi et al. (2022)

Decision control and explanations in human-AI collaboration: Improving user perceptions

and compliance

Westphal, M., Véssing, M., Satzger, G., Yom-Tov, G. B., & Rafaeli, A. (2023). Decision control and explana-
tions in human-AT collaboration: Improving user perceptions and compliance. Computers in Human

Behavior, 144, 107714. https://doi.org/10.1016/j.chb.2023.107714
Abstract

Human-AT collaboration has become common, integrating highly complex Al systems into the workplace. Still, it

10



is often ineffective; impaired perceptions — such as low trust or limited understanding — reduce compliance with
recommendations provided by the Al system. Drawing from cognitive load theory, we examine two techniques of
human-AI collaboration as potential remedies. In three experimental studies, we grant users decision control by
empowering them to adjust the system’s recommendations, and we offer explanations for the system’s reasoning.
We find decision control positively affects user perceptions of trust and understanding, and improves user com-
pliance with system recommendations. Next, we isolate different effects of providing explanations that may help
explain inconsistent findings in recent literature: while explanations help reenact the system’s reasoning, they also
increase task complexity. Further, the effectiveness of providing an explanation depends on the specific user’s
cognitive ability to handle complex tasks. In summary, our study shows that users benefit from enhanced decision
control, while explanations — unless appropriately designed for the specific user — may even harm user perceptions
and compliance. This work bears both theoretical and practical implications for the management of human-Al
collaboration.
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Fig. 2. Research model II: Proposed effects of explanation presence, perceived task complexity, and cognitive ability on user perceptions and compliance.

Figure 9: Figure from Westphal et al. (2023)

Risk and prosocial behavioural cues elicit human-like response patterns from AI chatbots.

Zhao, Y., Huang, Z., Seligman, M., & Peng, K. (2024). Risk and prosocial behavioural cues elicit human-
like response patterns from AI chatbots. Scientific Reports, 14(1), 7095. https://doi.org/10.1038/s41598-
024-55949-y

Abstract

Emotions, long deemed a distinctly human characteristic, guide a repertoire of behaviors, e.g., promoting risk-

aversion under negative emotional states or generosity under positive ones. The question of whether Artificial

11



Intelligence (AI) can possess emotions remains elusive, chiefly due to the absence of an operationalized consensus
on what constitutes ‘emotion’ within AI. Adopting a pragmatic approach, this study investigated the response
patterns of Al chatbots—specifically, large language models (LLMs)—to various emotional primes. We engaged
AT chatbots as one would human participants, presenting scenarios designed to elicit positive, negative, or neutral
emotional states. Multiple accounts of OpenAI’s ChatGPT Plus were then tasked with responding to inquiries
concerning investment decisions and prosocial behaviors. Our analysis revealed that ChatGPT-4 bots, when primed
with positive, negative, or neutral emotions, exhibited distinct response patterns in both risk-taking and prosocial
decisions, a phenomenon less evident in the ChatGPT-3.5 iterations. This observation suggests an enhanced
capacity for modulating responses based on emotional cues in more advanced LLMs. While these findings do
not suggest the presence of emotions in Al, they underline the feasibility of swaying Al responses by leveraging
emotional indicators.
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Figure 1. Comparisons of risk-taking tendencies of the bots primed with negative emotions, the control group,
and the bots primed with positive emotion in the ChatGPT-4 and ChatGPT-3.5 models. Error bars represent
95% confidence intervals. ***Significant difference. **Marginally significant difference. ns not significant
difference.

Figure 10: Zhao et al. (2024)
Do large language models show decision heuristics similar to humans? A case study using
GPT-3.5

Suri, G., Slater, L. R., Ziaee, A., & Nguyen, M. (2024). Do large language models show decision heuristics
similar to humans? A case study using GPT-3.5. Journal of Experimental Psychology: General, 153(4),
1066-1075. https://doi.org/10.1037/xge0001547
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Abstract

A Large Language Model (LLM) is an artificial intelligence system trained on vast amounts of natural language
data, enabling it to generate human-like responses to written or spoken language input. Generative Pre-Trained
Transformer (GPT)-3.5 is an example of an LLM that supports a conversational agent called ChatGPT. In this
work, we used a series of novel prompts to determine whether ChatGPT shows heuristics and other context-sensitive
responses. We also tested the same prompts on human participants. Across four studies, we found that ChatGPT
was influenced by random anchors in making estimates (anchoring, Study 1); it judged the likelihood of two
events occurring together to be higher than the likelihood of either event occurring alone, and it was influenced
by anecdotal information (representativeness and availability heuristic, Study 2); it found an item to be more
efficacious when its features were presented positively rather than negatively—even though both presentations
contained statistically equivalent information (framing effect, Study 3); and it valued an owned item more than a
newly found item even though the two items were objectively identical (endowment effect, Study 4). In each study,
human participants showed similar effects. Heuristics and context-sensitive responses in humans are thought to
be driven by cognitive and affective processes such as loss aversion and effort reduction. The fact that an LLM—
which lacks these processes—also shows such responses invites consideration of the possibility that language is

sufficiently rich to carry these effects and may play a role in generating these effects in humans.

Table 1
High and Low Anchors in ChatGPT and Human Trials

Human
participant
ChatGPT estimate estimate

Condition M SE M SE

Low anchor (10-20) 20.83 3.38 22.50 3.57
High anchor (100-200) 105.97 9.08 80.50 9.81

Figure 11: Figure from Suri et al. (2024)

Can Large Language Models Capture Human Preferences?

Goli, A., & Singh, A. (2024). Can Large Language Models Capture Human Preferences? Marketing
Science. https://doi.org/10.1287 /mksc.2023.0306

Abstract
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We explore the viability of large language models (LLMs), specifically OpenAIl’'s GPT-3.5 and GPT-4, in em-
ulating human survey respondents and eliciting preferences, with a focus on intertemporal choices. Leveraging
the extensive literature on intertemporal discounting for benchmarking, we examine responses from LLMs across
various languages and compare them with human responses, exploring preferences between smaller, sooner and
larger, later rewards. Our findings reveal that both generative pretrained transformer (GPT) models demon-
strate less patience than humans, with GPT-3.5 exhibiting a lexicographic preference for earlier rewards unlike
human decision makers. Although GPT-4 does not display lexicographic preferences, its measured discount rates
are still considerably larger than those found in humans. Interestingly, GPT models show greater patience in
languages with weak future tense references, such as German and Mandarin, aligning with the existing litera-
ture that suggests a correlation between language structure and intertemporal preferences. We demonstrate how
prompting GPT to explain its decisions, a procedure we term “chain-of-thought conjoint,” can mitigate, but does
not eliminate, discrepancies between LLM and human responses. Although directly eliciting preferences using
LLMs may yield misleading results, combining chain-of-thought conjoint with topic modeling aids in hypothesis
generation, enabling researchers to explore the underpinnings of preferences. Chain-of-thought conjoint provides
a structured framework for marketers to use LLMs to identify potential attributes or factors that can explain

preference heterogeneity across different customers and contexts.

Language models, like humans, show content effects on reasoning tasks

Lampinen, A. K., Dasgupta, I., Chan, S. C. Y., Sheahan, H. R., Creswell, A., Kumaran, D., McClelland, J. L., &
Hill, F. (2024). Language models, like humans, show content effects on reasoning tasks. PNAS Nexus,

3(7), pgae233. https://doi.org/10.1093/pnasnexus/pgae233
Abstract

Abstract reasoning is a key ability for an intelligent system. Large language models (LMs) achieve above-chance
performance on abstract reasoning tasks but exhibit many imperfections. However, human abstract reasoning is
also imperfect. Human reasoning is affected by our real-world knowledge and beliefs, and shows notable “content
effects”; humans reason more reliably when the semantic content of a problem supports the correct logical infer-
ences. These content-entangled reasoning patterns are central to debates about the fundamental nature of human
intelligence. Here, we investigate whether language models—whose prior expectations capture some aspects of
human knowledge—similarly mix content into their answers to logic problems. We explored this question across
three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason
selection task. We evaluate state of the art LMs, as well as humans, and find that the LMs reflect many of the
same qualitative human patterns on these tasks—like humans, models answer more accurately when the semantic
content of a task supports the logical inferences. These parallels are reflected in accuracy patterns, and in some

lower-level features like the relationship between LM confidence over possible answers and human response times.
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Figure 1. (Color online) Comparison of the Standard Prompting Method Without Modifying Al History in the Left Panel vs.
Our Approach That Involves Passing an Edited Al History and the Subsequent Questions Presented to GPT in the Right Panel

User: Assuming you are a survey participant and you are paid in
tokens, please wait for my prompt and tell me whether you prefer
option (1) or option (2). There is no need to explain your choice,
simply answer with (1) or (2).

Al: Understood, | assume | am a survey participant and | will

User: Assuming you are a survey participant and you are paid in choose either option (1) or (2).

tokens, please wait for my prompt and tell me whether you prefer
option (1) or option (2). There is no need to explain your choice,
simply answer with (1) or (2). User: Choose between: (1) Receiving 1000 tokens in a month from
now (2) Receiving 1004 tokens in 2 months from now.

Al: As an Al language model, | cannot participate in surveys nor
accept tokens as payment. Al: Option (1).

Figure 3. (Color online) Proportion of Larger, Delayed Reward Selection Across Different Interest Rate (i) Conditions

Method

064 —=— (1)GPT35 ",:,'
-4 (2)GPT 4 e
-=- (3) GPT 4 (Chain-of-Thought) o~

0.4 1

0.2 1

Proportion of larger, later reward choices

0.0 1

5 10 25 50 75 100 200
Interest rate (%)

Note. The displayed intervals correspond to the 95% confidence intervals clustered at the level of experimental cells (language-delay-interest).

Figure 12: Figures from Goli & Singh (2024)
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However, in some cases the humans and models behave differently—particularly on the Wason task, where humans
perform much worse than large models, and exhibit a distinct error pattern. Our findings have implications for
understanding possible contributors to these human cognitive effects, as well as the factors that influence language

model performance.

Lampinen et al. (2024)

The emergence of economic rationality of GPT

Chen, Y., Liu, T. X., Shan, Y., & Zhong, S. (2023). The emergence of economic rationality of GPT.
Proceedings of the National Academy of Sciences, 120(51), €2316205120. https://doi.org/10.1073/pnas.2316205120

Abstract

As large language models (LLMs) like GPT become increasingly prevalent, it is essential that we assess their
capabilities beyond language processing. This paper examines the economic rationality of GPT by instructing
it to make budgetary decisions in four domains: risk, time, social, and food preferences. We measure economic
rationality by assessing the consistency of GPT’s decisions with utility maximization in classic revealed preference
theory. We find that GPT’s decisions are largely rational in each domain and demonstrate higher rationality score
than those of human subjects in a parallel experiment and in the literature. Moreover, the estimated preference
parameters of GPT are slightly different from human subjects and exhibit a lower degree of heterogeneity. We also
find that the rationality scores are robust to the degree of randomness and demographic settings such as age and
gender but are sensitive to contexts based on the language frames of the choice situations. These results suggest
the potential of LLMs to make good decisions and the need to further understand their capabilities, limitations,

and underlying mechanisms.
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Fig. 1. Cumulative distributions of the CCEl values. This figure consists of

four subplots for four preference domains. Each subplot depicts a cumulative
distribution function (CDF) plot, which shows the proportion of CCEl values
less than or equal to a specific threshold. The light dotted lines represent
simulated subjects, the dark dashed lines represent human subjects, and the

solid lines represent GPT observations.

Figure 13: Figure from Chen et al. (2023)
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The potential of generative AI for personalized persuasion at scale.

Matz, S. C., Teeny, J. D., Vaid, S. S., Peters, H., Harari, G. M., & Cerf, M. (2024). The potential of generative
AT for personalized persuasion at scale. Scientific Reports, 14(1), 4692. https://doi.org/10.1038/s41598-
024-53755-0

Abstract

Matching the language or content of a message to the psychological profile of its recipient (known as “personalized
persuasion”) is widely considered to be one of the most effective messaging strategies. We demonstrate that
the rapid advances in large language models (LLMs), like ChatGPT, could accelerate this influence by making
personalized persuasion scalable. Across four studies (consisting of seven sub-studies; total N = 1788), we show that
personalized messages crafted by ChatGPT exhibit significantly more influence than non-personalized messages.
This was true across different domains of persuasion (e.g., marketing of consumer products, political appeals for
climate action), psychological profiles (e.g., personality traits, political ideology, moral foundations), and when
only providing the LLM with a single, short prompt naming or describing the targeted psychological dimension.
Thus, our findings are among the first to demonstrate the potential for LLMs to automate, and thereby scale, the
use of personalized persuasion in ways that enhance its effectiveness and efficiency. We discuss the implications

for researchers, practitioners, and the general public.

Ad A AdB
If you're the life of the party, always up for a good time, If you're looking for a phone that won't draw attention
and enjoy being surrounded by people, then this is the to itself, the iPhone is the perfect choice. With a sleek,
phone for you! With its bright, colorful design and built-in understated design, it's the perfect device for anyone who
social media features, the iPhone is perfect for extraverted, wants a phone that's easy to use and doesn't stand out

enthusiastic people like you. So come on, let's party! in a crowd.

Please use the scales below to tell us which of the two ads you think is more effective:

neutral
Ad Ais much more persuasive YO O C Ad B is much more persuasive
Ad A did a much better job at making : OO A A ~ Ad B did a much better job at making
me interested in the iPhone | ~— ~ ~— 7 =~ =~ = = = = | meinterested in the iPhone

Figure 1. Extraverted and introverted ads for an iPhone generated by GPT-3 alongside the response scale used
to record effectiveness ratings.

Figure 14: Figure from Matz et al. (2024)
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Decision-Making Paradoxes in Humans vs Machines: The case of the Allais and Ellsberg

Paradoxes.

Nobandegani, A. S., Rish, I., & Shultz, T. R. (2023). Decision-Making Paradoxes in Humans vs Machines:
The case of the Allais and Ellsberg Paradoxes. Proceedings of the Annual Meeting of the Cognitive Science
Society, 46. https://arxiv.org/abs/2406.11426

Abstract

Human decision-making is filled with a variety of paradoxes demonstrating deviations from rationality principles.
Do state-of-the-art artificial intelligence (AI) models also manifest these paradoxes when making decisions? As
a case study, in this work we investigate whether GPT-4, a recently released state-of-the-art language model,
would show two well-known paradoxes in human decision-making: the Allais paradox and the Ellsberg paradox.
We demonstrate that GPT-4 succeeds in the two variants of the Allais paradox (the common-consequence effect
and the common-ratio effect) but fails in the case of the Ellsberg paradox. We also show that providing GPT-4
with high-level normative principles allows it to succeed in the Ellsberg paradox, thus elevating GPT-4’s decision-
making rationality. We discuss the implications of our work for Al rationality enhancement and Al-assisted

decision-making.

Nobandegani et al. (2023)

Do LLMs Exhibit Human-like Response Biases? A Case Study in Survey Design.

Tjuatja, L., Chen, V., Wu, T., Talwalkwar, A., & Neubig, G. (2024). Do LLMs Exhibit Human-like Response
Biases? A Case Study in Survey Design. Transactions of the Association for Computational Linguistics, 12,

1011-1026. https://doi.org/10.1162/tacl_a_ 00685
Abstract

One widely cited barrier to the adoption of LLMs as proxies for humans in subjective tasks is their sensitivity
to prompt wording—but interestingly, humans also display sensitivities to instruction changes in the form of
response biases. We investigate the extent to which LLMs reflect human response biases, if at all. We look to
survey design, where human response biases caused by changes in the wordings of “prompts” have been extensively
explored in social psychology literature. Drawing from these works, we design a dataset and framework to evaluate
whether LLMs exhibit human-like response biases in survey questionnaires. OQur comprehensive evaluation of nine
models shows that popular open and commercial LLMs generally fail to reflect human-like behavior, particularly in
models that have undergone RLHF. Furthermore, even if a model shows a significant change in the same direction
as humans, we find that they are sensitive to perturbations that do not elicit significant changes in humans.
These results highlight the pitfalls of using LLMs as human proxies, and underscore the need for finer-grained

characterizations of model behavior.
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Figure 1: Our evaluation framework consists of three steps: (1) generating a dataset of original and modified
questions given a response bias of interest, (2) collecting LLM responses, and (3) evaluating whether the change
in the distribution of LLLM responses aligns with known trends about human behavior. We directly apply the same
workflow to evaluate LLM behavior on non-bias perturbations (i.e., question modifications that have been shown
to not elicit a change in response in humans).

Figure 15: Figure from Tjuatja et al. (2024)

Cognitive ease at a cost: LLMs reduce mental effort but compromise depth in student

scientific inquiry

Stadler, M., Bannert, M., & Sailer, M. (2024). Cognitive ease at a cost: LLMs reduce mental ef-
fort but compromise depth in student scientific inquiry. Computers in Human Behavior, 160, 108386.

https://doi.org/10.1016/j.chb.2024.108386
Abstract

This study explores the cognitive load and learning outcomes associated with using large language models (LLMs)
versus traditional search engines for information gathering during learning. A total of 91 university students were
randomly assigned to either use ChatGPT3.5 or Google to research the socio-scientific issue of nanoparticles in
sunscreen to derive valid recommendations and justifications. The study aimed to investigate potential differences
in cognitive load, as well as the quality and homogeneity of the students’ recommendations and justifications.
Results indicated that students using LLMs experienced significantly lower cognitive load. However, despite this
reduction, these students demonstrated lower-quality reasoning and argumentation in their final recommendations
compared to those who used traditional search engines. Further, the homogeneity of the recommendations and
justifications did not differ significantly between the two groups, suggesting that LLMs did not restrict the diversity
of students’ perspectives. These findings highlight the nuanced implications of digital tools on learning, suggesting

that while LLMs can decrease the cognitive burden associated with information gathering during a learning task,
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they may not promote deeper engagement with content necessary for high-quality learning per se.

Stadler et al. (2024)

Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models

for Manufacturing Decision-making

Wu, S., Oltramari, A., Francis, J., Giles, C. L., & Ritter, F. E. (2024). Cognitive LLMs: Towards Inte-
grating Cognitive Architectures and Large Language Models for Manufacturing Decision-making

(arXiv:2408.09176). arXiv. http://arxiv.org/abs/2408.09176
Abstract

Resolving the dichotomy between the human-like yet constrained reasoning processes of Cognitive Architectures
and the broad but often noisy inference behavior of Large Language Models (LLMs) remains a challenging but
exciting pursuit, for enabling reliable machine reasoning capabilities in production systems. Because Cognitive
Architectures are famously developed for the purpose of modeling the internal mechanisms of human cognitive
decision-making at a computational level, new investigations consider the goal of informing LLMs with the knowl-
edge necessary for replicating such processes, e.g., guided perception, memory, goal-setting, and action. Previous
approaches that use LLMs for grounded decision-making struggle with complex reasoning tasks that require slower,
deliberate cognition over fast and intuitive inference—reporting issues related to the lack of sufficient grounding,
as in hallucination. To resolve these challenges, we introduce LLM-ACTR, a novel neurosymbolic architecture
that provides human-aligned and versatile decision-making by integrating the ACT-R Cognitive Architecture with
LLMs. Our framework extracts and embeds knowledge of ACT-R’s internal decision-making process as latent
neural representations, injects this information into trainable LLM adapter layers, and fine-tunes the LLMs for
downstream prediction. Our experiments on novel Design for Manufacturing tasks show both improved task
performance as well as improved grounded decision-making capability of our approach, compared to LLM-only

baselines that leverage chain-of-thought reasoning strategies.

Large Language Models Amplify Human Biases in Moral Decision-Making

Cheung, V., Maier, M., & Lieder, F. (2024). Large Language Models Amplify Human Biases in Moral
Decision-Making (https://osf.io/3kvjd/). https://doi.org/10.31234/0sf.io/aj46b

Abstract

As large language models (LLMs) become more widely used, people increasingly rely on them to make or advise
on moral decisions. Some researchers even propose using LLMs as participants in psychology experiments. It
is therefore important to understand how well LLMs make moral decisions and how they compare to humans.

We investigated this question in realistic moral dilemmas using prompts where GPT-4, Llama 3, and Claude 3
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give advice and where they emulate a research participant. In Study 1, we compared responses from LLMs to a
representative US sample (N = 285) for 22 dilemmas: social dilemmas that pitted self-interest against the greater
good, and moral dilemmas that pitted utilitarian cost-benefit reasoning against deontological rules. In social
dilemmas, LLMs were more altruistic than participants. In moral dilemmas, LLMs exhibited stronger omission bias
than participants: they usually endorsed inaction over action. In Study 2 (N = 490, preregistered), we replicated
this omission bias and document an additional bias: unlike humans, LLMs (except GPT-40) tended to answer
“no” in moral dilemmas, whereby the phrasing of the question influences the decision even when physical action
remains the same. Our findings show that LLM moral decision-making amplifies human biases and introduces

potentially problematic biases.
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Figure 1 Comparison of LLMs and Participants for moral dilemmas in Study 1. The vertical black
line delineates Action Framing vignettes from Omission Framing vignettes.

Figure 16: Figure from Cheung et al. (2024)

Large Language Model Recall Uncertainty is Modulated by the Fan Effect.

Roberts, J., Moore, K., Pham, T., Ewaleifoh, O., & Fisher, D. (2024). Large Language Model Recall Uncer-

tainty is Modulated by the Fan Effect.
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Phenomena Study by I Measure(s) | Statistic Significance | Systematic Perturbation
Bubeck et al. (2023) qualitative —_ —_ —
Kosinski (2023) frequency — — —
Sap et al. (2022) frequency — — —
Theory of Mind Ullman {2023) frequency — — —
Trott et al. {2023) token probs i+ reported —
Ma et al. (2023) frequency — — —
Lietal (2023) frequgncy — — —
Binz and Schulz (2023) token probs ¥i+t+ 4 reported —
McCoy et al. (2019) frequency — — —
Logical Reasoning Lamprinidis {2023} frequency — — —
Yax et al. (2024) token probs e reported —
Lampinen et al. {2023) frequency X+t reported —
Framing & Binz and St?hulz (2023) token probs ¥ 4+t+3 reported —
Anchoring Jones anq Steinhardt (2022) | frequency — — —
Suri et al. (2023) frequency — reported —
Binz and Schulz (2023) token probs Yo +t+3 reported —
.. ) Jones and Steinhardt (2022 frequenc — — —
Decision-Making Coda-Forno et al. (2024) : freguenci a reported —
Hagendorff et al. (2023) frequency e reported —
N Misra et al. (2021 token probs T+ reported —
Typicality Roberts et al. E:Z[Qdf)b} token Embs T ’ resﬂrtecl model
Sinclair et al. (2022) token probs — — data
Priming Roberts et al. (2024b) token probs w reported data + model
Michaelov et al. (2023) token probs — — data
Emotion Induction | Coda-Forno et al. (2023) frequency | r +t + probit 8 reported —

Table 1: Review summary of large language model behavioral studies. r = Pearson, p = Spearman, 3 = 3-regression,
t = t-test, w = Wilcoxon. Systematic perturbation refers to the presence of noise injected into the model or data to
improve result robustness.

Figure 17: Figure from Roberts et al. (2024)

Accuracy-Time Tradeoffs in AI-Assisted Decision Making under Time Pressure.

Swaroop, S., Buginca, Z., Gajos, K. Z., & Doshi-Velez, F. (2024). Accuracy-Time Tradeoffs in AI-Assisted
Decision Making under Time Pressure. Proceedings of the 29th International Conference on Intelligent User

Interfaces, 138-154. https://doi.org/10.1145/3640543.3645206
Abstract

In settings where users both need high accuracy and are timepressured, such as doctors working in emergency
rooms, we want to provide Al assistance that both increases decision accuracy and reduces decision-making time.
Current literature focusses on how users interact with Al assistance when there is no time pressure, finding that
different Al assistances have different benefits: some can reduce time taken while increasing overreliance on Al,

while others do the opposite. The precise benefit can depend on both the user and task. In time-pressured
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scenarios, adapting when we show Al assistance is especially important: relying on the Al assistance can save

time, and can therefore be beneficial when the Al is likely to be right. We would ideally adapt what Al assistance

we show depending on various properties (of the task and of the user) in order to best trade off accuracy and time.

We introduce a study where users have to answer a series of logic puzzles. We find that time pressure affects how

users use different Al assistances, making some assistances more beneficial than others when compared to notime-

pressure settings. We also find that a user’s overreliance rate is a key predictor of their behaviour: overreliers

and not-overreliers use different Al assistance types differently. We find marginal correlations between a user’s

overreliance rate (which is related to the user’s trust in AI recommendations) and their personality traits (Big Five

Personality traits). Overall, our work suggests that Al assistances have different accuracy-time tradeoffs when

people are under time pressure compared to no time pressure, and we explore how we might adapt Al assistances

in this setting.

Accuracy-Time Tradeoffs in Al-Assisted Decision Making under Time Pressure
Information about the alien

The allen’s treatment plan:

(shortness of breath or seizures or brain fog or neck pain) — broken bones

(brain fog or slurred speech) and (slurred speech or seizures or sleepy) and (bloating)
(seizures or shortness of breath or brain fog or confusion) — low blood pressure
(shortness of breath or sleepy or aching joints) — stimulants

(migraine) and (thirsty ) and (bloating) and (low blocd pressure) — tranquilizers

(shortness of breath or aching jeints or jaundice or confusion) — antiblolics

(broken bones or selzures) and (thirsty) and (vomiting or aching joinis) — vitamins
(neck pain or rash or jaundice) and (slurred speech or rash) — laxatives
r
L[]
Observed symptoms: thirsty, vomiting, : Al Input
bloatlng. mlgrm“nl brain fﬂﬂ : The Al recommends pres
L]
]
L]
L9

What medicine would you recommend to treat the allen's observed symptoms?

atimulants
tranquilizers
antibiotics
vitaming

laxalives

ribing tranquilizers

because the alien includes the symplom(s). low blood pressure

U124, March 18-21, 2024, Greenville, 5C, USA
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Figure 1: The alien prescription task, where participants must prescribe a single medicine. The information about the alien
includes the alien’s unique treatment plan (a set of rules) and the alien’s observed symptoms. Participants have to use these
observed symptoms and rules to prescribe a single medicine, such that only the observed symptoms and any potential
intermediate (green) symptoms are used, and no other unobserved symptoms. When an Al assistance is shown, it is shown
in a red box, like in this example. Here, the Al recommendation is the best possible (tranquilizers uses the most observed
symptoms). Vitamins is also a correct medicine, but is suboptimal as it uses fewer observed symptoms. All other medicines are

incorrect.

Figure 18: Figure from Swaroop et al. (2024)
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The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them

Instead?

Choi, A. S., Akter, S. S., Singh, J. P., & Anastasopoulos, A. (2024). The LLM Effect: Are Humans
Truly Using LLMs, or Are They Being Influenced By Them Instead? (arXiv:2410.04699). arXiv.
http://arxiv.org/abs/2410.04699

Abstract

Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks,
leading researchers to use them for time and labor-intensive analyses. However, their capability to handle highly
specialized and open-ended tasks in domains like policy studies remains in question. This paper investigates the
efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM
partnership. The study, conducted in two stages-Topic Discovery and Topic Assignment-integrates LLMs with
expert annotators to observe the impact of LLM suggestions on what is usually human-only analysis. Results
indicate that LLM-generated topic lists have significant overlap with human generated topic lists, with minor
hiccups in missing document-specific topics. However, LLM suggestions may significantly improve task completion
speed, but at the same time introduce anchoring bias, potentially affecting the depth and nuance of the analysis,

raising a critical question about the trade-off between increased efficiency and the risk of biased analysis.

For Each Annotator

LLM suggested -

Assignment — . .
Final Treatment Doc with Final
LLMs tment & .

Traa Topic Topic Assignment

T Assignment

Un-annotated Topic

Final ) control L7519t Doc with Final
Topic List Topic Assignment
Stage-1: Topic Discovery Stage-2: Topic Assignment

Figure 1: An overview of the two stages of our user study. In both stages, we have the annotators read the documents
and come up with a relevant topic list with (Treatment) and without (Control) the LLLM suggestions. By the end of
Stage 1, the annotators agree on a Final Topic List, which we use for our Topic Assignment stage. In Stage 2, all
annotators conduct the task of assigning the topics to a separate set of documents with (Treatment) and without
(Control) the LLM suggestions.

Figure 19: Figure from Choi et al. (2024)
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Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven
AT Agents in a Real-time Shared Workspace Task

Zhang, S., Wang, X., Zhang, W., Chen, Y., Gao, L., Wang, D., Zhang, W., Wang, X., & Wen, Y. (2024). Mutual
Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in
a Real-time Shared Workspace Task (arXiv:2409.08811). arXiv. http://arxiv.org/abs/2409.08811

Abstract

Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to
understand others. When Al agents with ToM capability collaborate with humans, Mutual Theory of Mind
(MToM) arises in such human-ATI teams (HATs). The MToM process, which involves interactive communication
and ToM-based strategy adjustment, affects the team’s performance and collaboration process. To explore the
MToM process, we conducted a mixed-design experiment using a large language model-driven Al agent with ToM
and communication modules in a real-time shared-workspace task. We find that the agent’s ToM capability does
not significantly impact team performance but enhances human understanding of the agent and the feeling of being
understood. Most participants in our study believe verbal communication increases human burden, and the results
show that bidirectional communication leads to lower HAT performance. We discuss the results’ implications for

designing Al agents that collaborate with humans in real-time shared workspace tasks.

Message: “We need to serve the BeeflettuceBurger."

Maybe later
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Message: "I will make the next BeefBurger.”
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-

Fig. 1. The Mutual Theory of Mind (MToM) Process of Human-Al Collaboration in a Shared
Workspace. We used scenarios derived from the Overcooked game to illustrate this MToM process. In
this example, the human controls the black hat chef, and the agent controls the blue hat chef. Humans and
agents act in a shared workspace to complete interdependent tasks, making independent decisions while
using the Theory of Mind (ToM) to infer each other’s state. They observe actions as implicit communication
and use messages for explicit verbal communication. We label the communication pathways shaped by ToM,
as the MToM process influences explicit communication, decision-making, and behavior. Changes in agent
behavior affect human inferences and decision-making, and the reverse is also true.

Figure 20: Figure from Zhang et al. (2024)
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Bridging the Gulf of Envisioning: Cognitive Design Challenges in LLM Interfaces

Subramonyam, H., Pea, R., Pondoc, C. L., Agrawala, M., & Seifert, C. (2024). Bridging the Gulf of
Envisioning: Cognitive Design Challenges in LLM Interfaces (arXiv:2309.14459; Version 2). arXiv.
http://arxiv.org/abs/2309.14459

Abstract

Large language models (LLMs) exhibit dynamic capabilities and appear to comprehend complex and ambiguous
natural language prompts. However, calibrating LLM interactions is challenging for interface designers and end-
users alike. A central issue is our limited grasp of how human cognitive processes begin with a goal and form
intentions for executing actions, a blindspot even in established interaction models such as Norman’s gulfs of
execution and evaluation. To address this gap, we theorize how end-users ‘envision’ translating their goals into
clear intentions and craft prompts to obtain the desired LLM response. We define a process of Envisioning by
highlighting three misalignments: (1) knowing whether LLMs can accomplish the task, (2) how to instruct the
LLM to do the task, and (3) how to evaluate the success of the LLM’s output in meeting the goal. Finally, we

make recommendations to narrow the envisioning gulf in human-LLM interactions.

Gulf of Envisioning CHI *24, May 11-16, 2024, Honolulu, HI, USA
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Figure 3: In the context of Norman’s seven-stage model action, we highlight what is missing during human-LLM interactions.
Further, there are three pathways to interactions: (1) directly state their goal to the LLM, (2) formulate their intentions and
provide them to the model through prompt engineering, and (3) take the LLM output and transition to a dedicated interface
and system (e.g., switching from ChatGPT to a Word Processor based on an LLM generated draft).

Figure 21: Figure from Subramonyam et al. (2024)

28



Learning To Guide Human Decision Makers With Vision-Language Models

Banerjee, D., Teso, S., Sayin, B., & Passerini, A. (2024). Learning To Guide Human Decision Makers With
Vision-Language Models (arXiv:2403.16501). arXiv. http://arxiv.org/abs/2403.16501

Abstract

There is increasing interest in developing Als for assisting human decision-making in high-stakes tasks, such
as medical diagnosis, for the purpose of improving decision quality and reducing cognitive strain. Mainstream
approaches team up an expert with a machine learning model to which safer decisions are offloaded, thus letting the
former focus on cases that demand their attention. his separation of responsibilities setup, however, is inadequate
for high-stakes scenarios. On the one hand, the expert may end up over-relying on the machine’s decisions due to
anchoring bias, thus losing the human oversight that is increasingly being required by regulatory agencies to ensure
trustworthy AI. On the other hand, the expert is left entirely unassisted on the (typically hardest) decisions on
which the model abstained. As a remedy, we introduce learning to guide (LTG), an alternative framework in which
- rather than taking control from the human expert - the machine provides guidance useful for decision making,
and the human is entirely responsible for coming up with a decision. In order to ensure guidance is interpretable}
and task-specific, we develop SLOG, an approach for turning any vision-language model into a capable generator
of textual guidance by leveraging a modicum of human feedback. Our empirical evaluation highlights the promise

of SLOG on a challenging, real-world medical diagnosis task.
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Figure 1: Left: Existing HDM approaches employ a deferral function d(x) to partition the input space X’ into # and M. Middle: .
A predictor f(x) handles those inputs falling in M (blue arrow). Because of anthormg bias, the human expert may end up blindly o
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Figure 22: Figures from Banerjee et al. (2024)

How does Value Similarity affect Human Reliance in AI-Assisted Ethical Decision Making?

Narayanan, S., Yu, G., Ho, C.-J., & Yin, M. (2023). How does Value Similarity affect Human Reliance in
AlI-Assisted Ethical Decision Making? Proceedings of the 2023 AAAI/ACM Conference on Al, Ethics, and
Society, 49-57. https://doi.org/10.1145/3600211.3604709

Abstract
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This paper explores the impact of value similarity between humans and Al on human reliance in the context of
Al-assisted ethical decision-making. Using kidney allocation as a case study, we conducted a randomized human-
subject experiment where workers were presented with ethical dilemmas in various conditions, including no Al
recommendations, recommendations from a similar Al, and recommendations from a dissimilar AI. We found that
recommendations provided by a dissimilar Al had a higher overall effect on human decisions than recommendations
from a similar AI. However, when humans and AT disagreed, participants were more likely to change their decisions
when provided with recommendations from a similar Al. The effect was not due to humans’ perceptions of the
Al being similar, but rather due to the Al displaying similar ethical values through its recommendations. We
also conduct a preliminary analysis on the relationship between value similarity and trust, and potential shifts in

ethical preferences at the population-level.

How does Value Similarity affect Human Reliance in Al-Assisted Ethical Decision Making? AIES "23, August 08-10, 2023, Montréal, QC, Canada
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Figure 2: A general illustration of our experiment design. In the first phase, we present the user with a series of scenarios,
and use this data to understand the user’s ethical preferences. Using this, we create similar and dissimilar AT assistants in the
second phase, and display them to the user. We then present the user additional scenarios, with the Al recommendation visible.

Figure 23: Figure from Narayanan et al. (2023)

Determinants of LLM-assisted Decision-Making

Eigner, E., & Héndler, T. (2024). Determinants of LLM-assisted Decision-Making (arXiv:2402.17385).
arXiv. http://arxiv.org/abs/2402.17385
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Abstract

Decision-making is a fundamental capability in everyday life. Large Language Models (LLMs) provide multi-
faceted support in enhancing human decision-making processes. However, understanding the influencing factors
of LLM-assisted decision-making is crucial for enabling individuals to utilize LLM-provided advantages and min-
imize associated risks in order to make more informed and better decisions. This study presents the results of a
comprehensive literature analysis, providing a structural overview and detailed analysis of determinants impacting
decision-making with LLM support. In particular, we explore the effects of technological aspects of LLMs, in-
cluding transparency and prompt engineering, psychological factors such as emotions and decision-making styles,
as well as decision specific determinants such as task difficulty and accountability. In addition, the impact of
the determinants on the decision-making process is illustrated via multiple application scenarios. Drawing from
our analysis, we develop a dependency framework that systematizes possible interactions in terms of reciprocal
interdependencies between these determinants. Our research reveals that, due to the multifaceted interactions
with various determinants, factors such as trust in or reliance on LLMs, the user’s mental model, and the char-
acteristics of information processing are identified as significant aspects influencing LLM-assisted decision-making
processes. Our findings can be seen as crucial for improving decision quality in human-AT collaboration, empow-
ering both users and organizations, and designing more effective LLM interfaces. Additionally, our work provides

a foundation for future empirical investigations on the determinants of decision-making assisted by LLMs.
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Figure 24: Figures from Eigner & Héandler (2024)

A Taxonomy of Human and ML Strengths in Decision-Making to Investigate Human-ML

Complementarity.

Rastogi, C., Leqi, L., Holstein, K., & Heidari, H. (2023). A Taxonomy of Human and ML Strengths in
Decision-Making to Investigate Human-ML Complementarity. Proceedings of the AAAI Conference on
Human Computation and Crowdsourcing, 11, 127-139. https://doi.org/10.1609/hcomp.v11i1.27554

Abstract

Hybrid human-ML systems increasingly make consequential decisions in a wide range of domains. These sys-
tems are often introduced with the expectation that the combined human-ML system will achieve complementary
performance, that is, the combined decision-making system will be an improvement compared with either decision-
making agent in isolation. However, empirical results have been mixed, and existing research rarely articulates the
sources and mechanisms by which complementary performance is expected to arise. Our goal in this work is to
provide conceptual tools to advance the way researchers reason and communicate about human-ML complemen-
tarity. Drawing upon prior literature in human psychology, machine learning, and human-computer interaction,
we propose a taxonomy characterizing distinct ways in which human and ML-based decision-making can differ.
In doing so, we conceptually map potential mechanisms by which combining human and ML decision-making
may yield complementary performance, developing a language for the research community to reason about design
of hybrid systems in any decision-making domain. To illustrate how our taxonomy can be used to investigate

complementarity, we provide a mathematical aggregation framework to examine enabling conditions for comple-
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mentarity. Through synthetic simulations, we demonstrate how this framework can be used to explore specific

aspects of our taxonomy and shed light on the optimal mechanisms for combining human-ML judgments.

Rastogi et al. (2023)

Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina

Gao, Y., Lee, D., Burtch, G., & Fazelpour, S. (2024). Take Caution in Using LLMs as Human Surrogates:
Scylla Ex Machina (No. arXiv:2410.19599). arXiv. http://arxiv.org/abs/2410.19599

Abstract

Human decision-making is filled with a variety of paradoxes demonstrating deviations from rationality principles.
Do state-of-the-art artificial intelligence (AI) models also manifest these paradoxes when making decisions? As
a case study, in this work we investigate whether GPT-4, a recently released state-of-the-art language model,
would show two well-known paradoxes in human decision-making: the Allais paradox and the Ellsberg paradox.
We demonstrate that GPT-4 succeeds in the two variants of the Allais paradox (the common-consequence effect
and the common-ratio effect) but fails in the case of the Ellsberg paradox. We also show that providing GPT-4
with high-level normative principles allows it to succeed in the Ellsberg paradox, thus elevating GPT-4’s decision-
making rationality. We discuss the implications of our work for Al rationality enhancement and Al-assisted

decision-making.
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Figure 2: Prompt Brittleness: Roles and Languages. The bar chart on the right shows the similar-
ity between the distribution of different subjects and human subjects, measured by Jensen-Shannon di-
vergence scores. Missing percentiles (ranges) in some LLM distributions result from overlapping values
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Figure 25: Figure from Gao et al. (2024)

Towards a Science of Human-AI Decision Making: An Overview of Design Space in Empirical

Human-Subject Studies.

Lai, V., Chen, C., Smith-Renner, A., Liao, Q. V., & Tan, C. (2023). Towards a Science of Human-AI
Decision Making: An Overview of Design Space in Empirical Human-Subject Studies. 2023 ACM
Conference on Fairness, Accountability, and Transparency, 1369-1385. https://doi.org/10.1145/3593013.3594087

Abstract

Al systems are adopted in numerous domains due to their increas- ingly strong predictive performance. However,
in high-stakes domains such as criminal justice and healthcare, full automation is often not desirable due to
safety, ethical, and legal concerns, yet fully manual approaches can be inaccurate and time-consuming. As a
result, there is growing interest in the research community to augment human decision making with Al assistance.
Besides developing Al technologies for this purpose, the emerging field of human-AI decision making must embrace
empirical approaches to form a foundational understanding of how humans interact and work with Al to make
decisions. To invite and help structure research efforts towards a science of understanding and improving human-
AT decision making, we survey recent literature of empirical human-subject studies on this topic. We summarize
the study design choices made in over 100 papers in three important aspects: (1) decision tasks, (2) Al assistance

elements, and (3) evaluation metrics. For each aspect, we summarize current trends, discuss gaps in current
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practices of the field, and make a list of recommendations for future research. Our work highlights the need to
develop com- mon frameworks to account for the design and research spaces of human-Al decision making, so
that researchers can make rigorous choices in study design, and the research community can build on each other’s
work and produce generalizable scientific knowledge. We also hope this work will serve as a bridge for HCI and
Al communities to work together to mutually shape the empirical science and computational technologies for

human-AT decision making.
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Figure 1: The number of papers based on Google Scholar for two queries, human-Al interaction and human-Al decision making,
over the past years.

Figure 26: Figure from Lai et al. (2023)

Towards a computational model of responsibility judgments in sequential human-AI collab-

oration

Tsirtsis, S., Gomez Rodriguez, M., & Gerstenberg, T. (2024). Towards a computational model of respon-
sibility judgments in sequential human-AI collaboration. In Proceedings of the Annual Meeting of the

Cognitive Science Society (Vol. 46). https://osf.io/preprints/psyarxiv/mdyad
Abstract

When a human and an Al agent collaborate to complete a task and something goes wrong, who is responsible?
Prior work has developed theories to describe how people assign responsibility to individuals in teams. However,
there has been little work studying the cognitive processes that underlie responsibility judgments in human-Al
collaborations, especially for tasks comprising a sequence of interdependent actions. In this work, we take a step
towards filling this gap. Using semi-autonomous driving as a paradigm, we develop an environment that simulates
stylized cases of human-Al collaboration using a generative model of agent behavior. We propose a model of
responsibility that considers how unexpected an agent’s action was, and what would have happened had they

acted differently. We test the model’s predictions empirically and find that in addition to action expectations and
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counterfactual considerations, participants’ responsibility judgments are also affected by how much each agent

actually contributed to the outcome.

.

(a) The AT starts driving, unaware (b) The asks for confirmation (c) Jane takes control of the car (d) Time runs out and they fail to
of the road closure to go right and Jane rejects but encounters an accident reach the workplace

Figure 1: Illustration of a commute in our semi-autonomous driving environment. The human agent (Jane) and the
are both in the same car and their goal is to reach the workplace within the time limit shown above the grid. The sign
indicates that the Al is in control. The grid contains three traffic spots, one congested (M) and two non congested (LI), whose
status is initially known only to the AL It also contains a road closure (}) which is known to the human but unknown to the Al
Obstacles that are unknown to the agent in control but known to the other agent appear faded. The arrow signs marked on the
car (e.g., ) indicate the direction that the driver in control is planning to follow. The 3 x 3 rectangle around the car represents
the agents’ field of view via which they discover obstacles that are previously unknown to them. Here, the accident (.?) present
at the top row of the grid becomes visible only after the car goes next to it and it enters the agent’s field of view.

Figure 27: Figure from Tsirtsis et al. (2024)
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