
Running head: THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A
COMPUTATIONAL MODELING APPROACH

The Role of Variability in Learning Generalization: A Computational Modeling Approach

Thomas Gorman1

1Indiana University



The Role of Variability in Learning Generalization: A Computational Modeling Approach

Table of contents

Introduction 18

Varied Training and Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Existing Theoretical Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

The current work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Project 1 33

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Similarity and instance-based approaches to transfer of learning . . . . . . . . . . 33

Issues with Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Sample Size Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Data Processing and Statistical Packages . . . . . . . . . . . . . . . . . . . 40

Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Task and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 2

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Data Processing and Statistical Packages . . . . . . . . . . . . . . . . . . . 46

Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Experiment 2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Fitting model parameters separately by group . . . . . . . . . . . . . . . . . . . . 57

Project 1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Project 2 68

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Function Learning and Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . 68

Variability and Function Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Overview Of Present Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Analyses Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Experiment 1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Methods & Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Experiment 2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Methods & Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 3

Experiment 3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ALM & Exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Modelling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Project 2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

General Discussion 124

Empirical and Modeling Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Differences between the two Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix 130



List of Figures

1 Left panel- Generalization predicted from a simple model that assumes a linear

generalization function. A varied group (red vertical lines indicate the 2 training

locations) trained from positions 400 and 800, and a constant group (blue vertical

line), trained from position 600. Right panel- if a Gaussian generalization func-

tion is assumed, then varied training (400, 800) is predicted to result in better

generalization to positions close to 400 and 800 than does constant training at

600. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.) . . . . . . . . . . . . . . . . . . . . . 37

2 The stimuli of the task consisted of a blue ball, which the participants would

launch at the green target, while avoiding the red barrier. On each trial, the ball

would appear in the center of the orange square, with the position of the orange

square varying between experimental conditions. Participants were constrained

to release the ball within the square. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Training performance for varied and constant participants binned into three

stages. Shorter bars indicate better performance (ball landing closer to the center

of the target). Error bars indicate standard error of the mean. . . . . . . . . . . . . 42

4



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 5

4 Testing performance for each of the 4 testing positions, compared between train-

ing conditions. Positions 610 and 910 were trained on by the varied group, and

novel for the constant group. Position 760 was trained on by the constant group,

and novel for the varied group. Position 835 was novel for both groups. Shorter

bars are indicative of better performance (the ball landing closer to the center of

the target). Error bars indicate standard error of the mean. . . . . . . . . . . . . . 43

5 Training performance for the six constant conditions, and the varied condition,

binned into three stages. On the left side, the six constant groups are averaged

together, as are the two training positions for the varied group. On the right side,

the six constant groups are shown separately, with each set of bars representing

the beginning, middle, and end of training for a single constant group that trained

from the position indicated on the x-axis. Figure 5b also shows training perfor-

mance separately for both of the throwing locations trained by the varied group.

Error bars indicate standard error of the mean. . . . . . . . . . . . . . . . . . . . . 48

6 Testing phase performance from each of the six testing positions. The six con-

stant conditions are averaged together into a single constant group, compared

against the single varied-trained group.B) Transfer performance from each of the

6 throwing locations fromwhich all participants were tested. Each bar represents

performance from one of seven distinct training groups (six constant groups in

red, one varied group in blue). The x axis labels indicate the location(s) from

which each group trained. Lower values along the y axis reflect better perfor-

mance at the task (closer distance to target center). Error bars indicate standard

error of the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 6

7 A comparison of throwing location that are identical to those trained by the con-

stant participants (e.g., constant participants trained at position 900, tested from

position 900), which are also novel to the varied-trained participants (thus ex-

cluding positions 500 and 800). Error bars indicate standard error of the mean. . . 52

8 A) A visual representation of the combinations of throw parameters (x and y ve-

locities applied to the ball at launch), which resulted in target hits during the

testing phase. This empirical solution space was compiled from all of the partic-

ipants in Experiment 2. B) shows the solution space within the context of all of

the throws made throughout the testing phase of the experiment. . . . . . . . . . 55



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 7

9 A simple model depicting the necessity of both of two separately fit generaliza-

tion parameters, c, and a positive distance between training and testing contexts,

in order for an instance model to predict a pattern of varied training from stimuli

400 and 800 outperforming constant training from position 600 at a test position

of 600. For the top left panel, in which the generalization model assumes a sin-

gle c value (-.008) for both varied and constant conditions, and identical contexts

across training and testing, the equation which generates the varied condition is

- Amount of Generalization = 𝑒(𝑐⋅|𝑥−800|) + 𝑒(𝑐⋅|𝑥−400|), whereas the constant group

generalization is generated from 2 ⋅ 𝑒(𝑐⋅|𝑥−600|). For the top right panel, the c con-

stants in the original equations are different for the 2 conditions, with 𝑐 = −.002

for the varied condition, and 𝑐 = −.008 for the constant condition. The bottom

two panels are generated from identical equations to those immediately above,

except for the addition of extra distance (100 units) to reflect the assumption of

some change in context between training and testing conditions. Thus, the gen-

eralization model for the varied condition in the bottom-right panel is of the form

- Amount of Generalization = 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−800|) + 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−400|) . . . . . . . . . . . . . 63

10 Generalization reproduced patterns from DeLosh et al. (1997) Figure 3. Stimulii

that fall within the dashed lines are interpolations of the training examples. . . . 72

11 The Hit the wall task. Participants launch the blue ball to hit the red wall at the

target velocity band indicated at the top of the screen. The ball must be released

from within the orange square - but the location of release, and the location at

which the ball strikes the wall are both irrelevant to the task feedback. . . . . . . 74



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 8

12 Experiment 1 Design. Constant and Varied participants complete different train-

ing conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

13 Experiment 1 Training Stage. Deviations from target band across training blocks.

Lower values represent greater accuracy. . . . . . . . . . . . . . . . . . . . . . . . 77

14 Experiment 1 Testing Accuracy. A) Empricial Deviations from target band dur-

ing testing without feedback stage. B) Conditional effect of condition (Constant

vs. Varied) and testing band type (trained bands vs. novel extrapolation bands) on

testing accuracy. Error bars represent 95% credible intervals. . . . . . . . . . . . . 79

15 Experiment 1. Empirical distribution of velocities producing in testing stage.

Translucent bands with dashed lines indicate the correct range for each veloc-

ity band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

16 Experiment 1 Discrimination. A) Conditional effect of training condition and

Band. Ribbons indicate 95% HDI. The steepness of the lines serves as an indi-

cator of how well participants discriminated between velocity bands. B) The dis-

tribution of slope coefficients for each condition. Larger slopes indicates better

discrimination. C) Individual participant slopes. Error bars represent 95% HDI. . . 82

17 Experiment 2 Design. Constant and Varied participants complete different train-

ing conditions. The training and testing bands are the reverse of Experiment 1. . . 83

18 Experiment 2 Training Stage. Deviations from target band across training blocks.

Lower values represent greater accuracy. . . . . . . . . . . . . . . . . . . . . . . . 84



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 9

19 Experiment 2 Testing Accuracy. A) Empricial Deviations from target band dur-

ing testing without feedback stage. B) Conditional effect of condition (Constant

vs. Varied) and testing band type (trained bands vs. novel extrapolation bands) on

testing accuracy. Error bars represent 95% credible intervals. . . . . . . . . . . . . 86

20 Experiment 2. Empirical distribution of velocities produced in the testing stage.

Translucent bands with dash lines indicate the correct range for each velocity band. 88

21 Experiment 2 Discrimination. A) Conditional effect of training condition and

Band. Ribbons indicate 95% HDI. The steepness of the lines serves as an indica-

tor of how well participants discriminated between velocity bands. B) The dis-

tribution of slope coefficients for each condition. Larger slopes indicates better

discrimination. C) Individual participant slopes. Error bars represent 95% HDI. . . 89

22 Experiment 3 training. Deviations from target band during training. Shown sep-

arately for groups trained with the orginal order (used in E1) and reverse order

(used in E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

23 Experiment 3 Testing Accuracy. A) Empricial Deviations from target band dur-

ing testing without feedback stage. B) Conditional effect of condition (Constant

vs. Varied) and testing band type (trained bands vs. novel extrapolation bands)

on testing accuracy. Shown separately for groups trained with the orginal or-

der (used in E1) and reverse order (used in E2). Error bars represent 95% credible

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

24 e3 testing x velocities. Translucent bands with dash lines indicate the correct

range for each velocity band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 10

25 Experiment 3 Discrimination. A) Conditional effect of training condition and

Band. Ribbons indicate 95% HDI. The steepness of the lines serves as an indica-

tor of how well participants discriminated between velocity bands. B) The dis-

tribution of slope coefficients for each condition. Larger slopes indicates better

discrimination. C) Individual participant slopes. Error bars represent 95% HDI. . . 98

26 The Associative Learning Model (ALM). The diagram illustrates the basic struc-

ture of the ALM model as used in the present work. Input nodes are activated

as a function of their similarity to the lower-boundary of the target band. The

generalization parameter, 𝑐, determines the degree to which nearby input nodes

are activated. The output nodes are activated as a function of the weighted sum

of the input nodes - weights are updated via the delta rule. . . . . . . . . . . . . . 99

27 Posterior Distributions of 𝑐 and 𝑙𝑟 parameters. Points represent median values,

thicker intervals represent 66% credible intervals and thin intervals represent 95%

credible intervals around the median. Note that the y-axes of the plots for the c

parameter are scaled logarithmically. . . . . . . . . . . . . . . . . . . . . . . . . . 107

28 Model residuals for each combination of training condition, fit method, and

model. Residuals reflect the difference between observed and predicted values.

Lower values indicate better model fit. Note that y-axes are scaled differently

between facets. A) Residuals predicting each block of the training data. B)

Residuals predicting each band during the testing stage. Bolded bars indicate

bands that were trained, non-bold bars indicate extrapolation bands. . . . . . . . . 108



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 11

29 Empirical data and Model predictions for mean velocity across target bands. Fit-

ting methods (Test Only, Test & Train, Train Only) - are separated across rows,

and Training Condition (Constant vs. Varied) are separated by columns. Each

facet contains the predictions of ALM and EXAM, alongside the observed data. . . 110

30 A-C) Conditional effects of Model (ALM vs EXAM) and Condition (Constant

vs. Varied). Lower values on the y axis indicate better model fit. D) Specific

contrasts of model performance comparing 1) EXAM fits between constant and

varied training; 2) ALM vs. EXAM for the varied group; 3) ALM fits between

constant and varied. Negative error differences indicate that the term on the left

side (e.g., EXAM Constant) tended to have smaller model residuals. . . . . . . . . 111

31 Empirical data and Model predictions from Experiment 2 and 3 for the testing

stage. Observed data is shown on the right. Bolded bars indicate bands that were

trained, non-bold bars indicate extrapolation bands. . . . . . . . . . . . . . . . . . 113

32 Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Varied)

on Model Error for Experiment 2 and 3 data. Experiment 3 also includes a control

for the order of training vs. testing bands (original order vs. reverse order). . . . . 116

33 Difference in model errors for each participant, with models fit to both train and

test data. Positive values favor EXAM, while negative values favor ALM. . . . . . 120

34 Model predictions alongside observed data for a subset of individual participants.

A) 3 constant and 3 varied participants fit to both the test and training data. B) 3

constant and 3 varied subjects fit to only the trainign data. Bolded bars indicate

bands that were trained, non-bold bars indicate extrapolation bands. . . . . . . . . 121



List of Tables

1 Testing performance for varied and constant groups in experiment 1. Mean abso-

lute deviation from the center of the target, with standard deviations in parenthesis. 44

2 Transfer performance from each of the 6 throwing locations from which all par-

ticipants were tested. Each bar represents performance from one of seven distinct

training groups (six constant groups in red, one varied group in blue). The x axis

labels indicate the location(s) fromwhich each group trained. Lower values along

the y axis reflect better performance at the task (closer distance to target center).

Error bars indicate standard error of the mean. . . . . . . . . . . . . . . . . . . . . 50

3 Testing performance from novel positions. Includes data only from positions that

were not encountered during the training stage (e.g., excludes positions 500 and

800 for the varied group, and one of the six locations for each of the constant

groups). Table presents Mean absolute deviations from the center of the target,

and standard deviations in parenthesis. . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Testing performance from the locations trained by constant participants and

novel to varied participants. Locations 500 and 800 are not included as these

were trained by the varied participants. Table presents Mean absolute deviation

from the center of the target, and standard deviations in parenthesis. . . . . . . . 52

12



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 13

5 Statistical Model Specifications. The specifications for the Bayesian regression

models used in the analyses of each of the 3 experiments. Comparisons of ac-

curacy use abosulte deviation as the dependent variable, while comparisons of

discrimination use the raw velocities produced by participants as the dependent

variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Experiment 1 - End of training performance. Comparing final training block

accuracy in band common to both groups. The Intercept represents the average of

the baseline condition (constant training), and the conditVaried coefficient reflects

the difference between the constant and varied groups. A larger positive estimates

indicates a greater deviation (lower accuracy) for the varied group. CrI values

indicate 95% credible intervals. pd is the probability of direction (the % of the

posterior on the same side of 0 as the coefficient estimate). . . . . . . . . . . . . . 77

7 Experiment 1 testing accuracy. Main effects of condition and band type (train-

ing vs. extrapolation bands), and the interaction between the two factors. The

Intercept represents the baseline condition (constant training & trained bands).

Larger coefficients indicate larger deviations from the baselines - and a positive

interaction coefficient indicates disproporionate deviation for the varied condi-

tion on the extrapolation bands. CrI values indicate 95% credible intervals. pd is

the probability of direction (the % of the posterior on the same side of 0 as the

coefficient estimate). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 14

8 Experiment 1 Testing Discrimination. Bayesian Mixed Model Predicting

velocity as a function of condition (Constant vs. Varied) and Velocity Band.

Larger coefficients for the Band term reflect a larger slope, or greater sensi-

tivity/discrimination. The interaction between condit and Band indicates the

difference between constant and varied slopes. CrI values indicate 95% credible

intervals. pd is the probability of direction (the % of the posterior on the same

side of 0 as the coefficient estimate). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Experiment 2 - End of training performance. The Intercept represents the aver-

age of the baseline condition (constant training), and the conditVaried coefficient

reflects the difference between the constant and varied groups. A larger positive

coefficient indicates a greater deviation (lower accuracy) for the varied group. CrI

values indicate 95% credible intervals. pd is the probability of direction (the % of

the posterior on the same side of 0 as the coefficient estimate). . . . . . . . . . . . 84

10 Experiment 2 testing accuracy. Main effects of condition and band type (train-

ing vs. extrapolation), and the interaction between the two factors. The Intercept

represents the baseline condition (constant training & trained bands). Larger co-

efficients indicate larger deviations from the baselines - and a positive interaction

coefficient indicates disproporionate deviation for the varied condition on the ex-

trapolation bands. CrI values indicate 95% credible intervals. pd is the probability

of direction (the % of the posterior on the same side of 0 as the coefficient estimate). 85



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 15

11 Experiment 2 Testing Discrimination. Bayesian Mixed Model Predicting

velocity as a function of condition (Constant vs. Varied) and Velocity Band.

Larger coefficients for the Band term reflect a larger slope, or greater sensi-

tivity/discrimination. The interaction between condit and Band indicates the

difference between constant and varied slopes. CrI values indicate 95% credible

intervals. pd is the probability of direction (the % of the posterior on the same

side of 0 as the coefficient estimate) . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12 Experiment 3 - End of training performance. The Intercept represents the aver-

age of the baseline condition (constant training & original band order), the condit-

Varied coefficient reflects the difference between the constant and varied groups,

and the bandOrderReverse coefficient reflects the difference between original and

reverse order. A larger positive coefficient indicates a greater deviation (lower

accuracy) for the varied group. The negative value for the interaction between

condit and bandOrder indicates that varied condition with reverse order had sig-

nificantly lower deviations than the varied condition with the original band order 90

13 Experiment 3 testing accuracy. Main effects of condition and band type (training

vs. extrapolation), and the interaction between the two factors. The Intercept

represents the baseline condition, (constant training, trained bands & original

order), and the remaining coefficients reflect the deviation from that baseline.

Positive coefficients thus represent worse performance relative to the baseline, -

and a positive interaction coefficient indicates disproportionate deviation for the

varied condition or reverse order condition. . . . . . . . . . . . . . . . . . . . . . 91



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 16

14 Experiment 3 testing discrimination. Bayesian Mixed Model Predicting Vx as

a function of condition (Constant vs. Varied) and Velocity Band. The Intercept

represents the baseline condition (constant training & original order), and the

Band coefficient represents the slope for the baseline condition. The interac-

tion terms which include condit and Band (e.g., conditVaried:Band & condit-

Varied:bandOrderReverse:band) respectively indicate the how the slopes of the

varied-original condition differed from the baseline condition, and how varied-

reverse condition differed from the varied-original condition . . . . . . . . . . . . 93

15 ALM & EXAM Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

16 Models errors predicting empirical data from Experiment 1 - aggregated over the

full posterior distribution for each participant. Note that Fit Method refers to the

subset of the data that the model was trained on, while Task Stage refers to the

subset of the data that the model was evaluated on. . . . . . . . . . . . . . . . . . 106

17 Models errors predicting empirical data - aggregated over all participants, pos-

terior parameter values, and velocity bands. Note that Fit Method refers to the

subset of the data that the model was trained on, while Task Stage refers to the

subset of the data that the model was evaluated on. . . . . . . . . . . . . . . . . . 112



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 17

18 Results of Bayesian Regression models predicting model error as a function of

Model (ALM vs. EXAM), Condition (Constant vs. Varied), and the interaction be-

tween Model and Condition. The values represent the estimate coefficient for

each term, with 95% credible intervals in brackets. The intercept reflects the base-

line of ALM and Constant. The other estimates indicate deviations from the base-

line for the EXAMmode and varied condition. Lower values indicate bettermodel

fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

19 Comparison of the tasks in Project 1 (HTT) and Project 2 (HTW). . . . . . . . . . 128



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 18

Introduction

Varied Training and Generalization

Varied training has been shown to influence learning in a wide array of different tasks and

domains, including categorization (Hahn et al., 2005; Maddox & Filoteo, 2011; Morgenstern et al.,

2019; Nosofsky et al., 2019; Plebanek & James, 2021; Posner & Keele, 1968), language learning

(Brekelmans et al., 2022; Jones & Brandt, 2020; Perry et al., 2010; Twomey et al., 2018; Wonnacott

et al., 2012), anagram completion (Goode et al., 2008), perceptual learning (Lovibond et al., 2020;

Manenti et al., 2023; Robson et al., 2022; Zaman et al., 2021), trajectory extrapolation (Fulvio

et al., 2014), cognitive control tasks (Moshon-Cohen et al., 2024; Sabah et al., 2019), associative

learning (Fan et al., 2022; Lee et al., 2019; Livesey & McLaren, 2019; Prada & Garcia-Marques,

2020; Reichmann et al., 2023), visual search (George & Egner, 2021; Gonzalez & Madhavan, 2011;

T. A. Kelley & Yantis, 2009), voice identity learning (Lavan et al., 2019), face recognition (Burton

et al., 2016; Honig et al., 2022; Menon et al., 2015), the perception of social group heterogeneity

(Gershman & Cikara, 2023; Konovalova & Le Mens, 2020; Linville & Fischer, 1993; Park & Hastie,

1987) , simple motor learning (Braun et al., 2009; Kerr & Booth, 1978; Roller et al., 2001; Willey &

Liu, 2018a), sports training (Breslin et al., 2012; Green et al., 1995; North et al., 2019), and complex

skill learning (Hacques et al., 2022; Huet et al., 2011; Seow et al., 2019). See Czyż (2021) or Raviv

et al. (2022) for more detailed reviews.

Research on the effects of varied training typically manipulates variability in one of two

ways. In the first approach, a high variability group is exposed to a greater number of unique in-

stances during training, while a low variability group receives fewer unique instances with more

repetitions. Alternatively, both groups may receive the same number of unique instances, but the
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high variability group’s instances are more widely distributed or spread out in the relevant psy-

chological space, while the low variability group’s instances are clustered more tightly together.

Researchers then compare the training groups in terms of their performance during the training

phase, as well as their generalization performance during a testing phase. Researchers usually

compare the performance of the two groups during both the training phase and a subsequent

testing phase. The primary theoretical interest is often to assess the influence of training vari-

ability on generalization to novel testing items or conditions. However, the test may also include

some or all of the items that were used during the training stage, allowing for an assessment of

whether the variability manipulation influenced the learning of the trained items themselves, or

to easily measure how much performance degrades as a function of how far away testing items

are from the training items.

The influence of training variability has received a large amount of attention in the domain

of sensorimotor skill learning. Much of this research has been influenced by the work of Schmidt

(1975), who proposed a schema-based account of motor learning as an attempt to address the

longstanding problem of how novel movements are produced. Schema theory presumes that

learners possess general motor programs for a class of movements (e.g., an underhand throw).

When called up for use motor programs are parameterized by schema rules which determine

how the motor program is parameterized or scaled to the particular demands of the current task.

Schema theory predicts that variable training facilitates the formation of more robust schemas,

which will result in improved generalization or transfer. Experiments that test this hypothesis

are often designed to compare the transfer performance of a constant-trained group against that

of a varied-trained group. Both groups train on the same task, but the varied group practices with

multiple instances along some task-relevant dimension that remains invariant for the constant
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group. For example, studies using a projectile throwing task might assign participants to either

constant training that practice throwing from a single location, or to a varied group that throws

from multiple locations. Following training, both groups are then tested from novel throwing

locations (Pacheco & Newell, 2018; Pigott & Shapiro, 1984; Willey & Liu, 2018a; Wulf, 1991).

One of the earliest and still often cited investigations of Schmidt’s benefits of variability

hypothesis was the work of Kerr and Booth (1978). Two groups of children, aged 8 and 12, were

assigned to either constant or varied training of a bean bag throwing task. The constant group

practiced throwing a bean-bag at a small target placed 3 feet in front of them, and the varied group

practiced throwing from a distance of both 2 feet and 4 feet. Participants were blindfolded and

unable to see the target while making each throw but would receive feedback by looking at where

the beanbag had landed in between each training trial. 12 weeks later, all of the children were

given a final test from a distance of 3 feet whichwas novel for the varied participants and repeated

for the constant participants. Participants were also blindfolded for testing and did not receive

trial by trial feedback in this stage. In both age groups, participants performed significantly better

in the varied condition than the constant condition, though the effect was larger for the younger,

8-year-old children. This result provides particularly strong evidence for the benefits of varied

practice, as the varied group outperformed the constant group even when tested at the “home-

turf” distance that the constant group had exclusively practiced. A similar pattern of results was

observed in another study wherein varied participants trained with tennis, squash, badminton,

and short-tennis rackets were compared against constant subjects trained with only a tennis

racket (Green et al., 1995). One of the testing conditions had subjects repeat the use of the tennis

racket, which had been used on all 128 training trials for the constant group, and only 32 training

trials for the varied group. Nevertheless, the varied group outperformed the constant group
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when using the tennis racket at testing, and also performed better in conditions with several

novel racket lengths. However, as is the case with many of the patterns commonly observed

in the “benefits of variability” literature, the pattern wherein the varied group outperfroms the

constant group even from the constants group’s home turf has not been consistently replicated.

One recent study attempted a near replication of the Kerr & Booth study (Willey & Liu, 2018b),

having subjects throw beanbags at a target, with the varied group training from positions (5 and 9

feet) on either side of the constant group (7 feet). This study did not find a varied advantage from

the constant training position, though the varied group did perform better at distances novel to

both groups. However, this study diverged from the original in that the participants were adults;

and the amount of training was much greater (20 sessions with 60 practice trials each, spread out

over 5-7 weeks).

Pitting varied against constant practice against each other on the home turf of the constant

group provides a compelling argument for the benefits of varied training, as well as an interesting

challenge for theoretical accounts that posit generalization to occur as some function of distance.

However, despite its appeal this particular contrast is relatively uncommon in the literature. It is

unclear whether this may be cause for concern over publication bias, or just researchers feeling

the design is too risky. A far more common design is to have separate constant groups that

each train exclusively from each of the conditions that the varied group encounters (Catalano &

Kleiner, 1984; Chua et al., 2019; McCracken & Stelmach, 1977; Moxley, 1979; K. Newell & Shapiro,

1976), or for a single constant group to train from just one of the conditions experienced by the

varied participants (Pigott & Shapiro, 1984; Roller et al., 2001; Wrisberg &McLean, 1984; Wrisberg

& Mead, 1983). A less common contrast places the constant group training in a region of the task

space outside of the range of examples experienced by the varied group, but distinct from the
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transfer condition (Wrisberg et al., 1987; Wulf & Schmidt, 1997). Of particular relevance to the

current work is the early study of Catalano and Kleiner (1984), as theirs was one of the earliest

studies to investigate the influence of varied vs. constant training on multiple testing locations of

graded distance from the training condition. Participants were trained on coincident timing task,

in which subjects observe a series of lightbulbs turning on sequentially at a consistent rate and

attempt to time a button response with the onset of the final bulb. The constant groups trained

with a single velocity of either 5,7,9, or 11 mph, while the varied group trained from all 4 of these

velocities. Participants were then assigned to one of four possible generalization conditions, all

of which fell outside of the range of the varied training conditions – 1, 3, 13 or 15 mph. As is

often the case, the varied group performed worse during the training phase. In the testing phase,

the general pattern was for all participants to perform worse as the testing conditions became

further away from the training conditions, but since the drop off in performance as a function of

distancewas far less steep for the varied group, the authors suggested that varied training induced

a decremented generalization gradient, such that the varied participants were less affected by the

change between training and testing conditions.

Benefits of varied training have also been observed in many studies outside of the senso-

rimotor domain. Goode et al. (2008) trained participants to solve anagrams of 40 different words

ranging in length from 5 to 11 letters, with an anagram of each word repeated 3 times throughout

training, for a total of 120 training trials. Although subjects in all conditions were exposed to the

same 40 unique words (i.e. the solution to an anagram), participants in the varied group saw 3

different arrangements for each solution-word, such as DOLOF, FOLOD, and OOFLD for the solu-

tion word FLOOD, whereas constant subjects would train on three repetitions of LDOOF (spread

evenly across training). Two different constant groups were used. Both constant groups trained
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with three repetitions of the same word scramble, but for constant group A, the testing phase

consisted of the identical letter arrangement to that seen during training (e.g., LDOOF), whereas

for constant group B, the testing phase consisted of a arrangement they had not seen during

training, thus presenting them with a testing situation similar situation to the varied group. At

the testing stage, the varied group outperformed both constant groups, a particularly impressive

result, given that constant group A had three prior exposures to the word arrangement (i.e. the

particular permutation of letters) which the varied group had not explicitly seen. However varied

subjects in this study did not exhibit the typical decrement in the training phase typical of other

varied manipulations in the literature, and actually achieved higher levels of anagram solving

accuracy by the end of training than either of the constant groups – solving two more anagrams

on average than the constant group. This might suggest that for tasks of this nature where the

learner can simply get stuck with a particular word scramble, repeated exposure to the identical

scramble might be less helpful towards finding the solution than being given a different arrange-

ment of the same letters. This contention is supported by the fact that constant group A, who was

tested on the identical arrangement as they experienced during training, performed no better at

testing than did constant group B, who had trained on a different arrangement of the same word

solution – further suggesting that there may not have been a strong identity advantage in this

task.

In the domain of category learning, the constant vs. varied comparison is much less suit-

able. Instead, researchers will typically employ designs where all training groups encounter nu-

merous stimuli, but one group experiences a greater number of unique exemplars (Brunstein &

Gonzalez, 2011; Doyle & Hourihan, 2016; Hosch et al., 2023; Nosofsky et al., 2019; Wahlheim et al.,

2012), or designs where the number of unique training exemplars is held constant, but one group
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trains with items that are more dispersed, or spread out across the category space (Bowman &

Zeithamova, 2020; Homa&Vosburgh, 1976; Hu&Nosofsky, 2024; Maddox & Filoteo, 2011; Posner

& Keele, 1968).

Much of the earlier work in this sub-area trained subjects on artificial categories, such

as dot patterns (Homa & Vosburgh, 1976; Posner & Keele, 1968). A seminal study by Posner and

Keele (1968) trained participants to categorize artificial dot patterns, manipulating whether learn-

ers were trained with low variability examples clustered close to the category prototypes (i.e. low

distortion training patterns), or higher-variability patterns spread further away from the proto-

type (i.e. high-distortion patterns). Participants that received training on more highly-distorted

items showed superior generalization to novel high distortion patterns in the subsequent testing

phase. It should be noted that unlike the sensorimotor studies discussed earlier, the Posner and

Keele (1968) study did not present low-varied and high-varied participants with an equal number

of training rathers, but instead had participants remain in the training stage of the experiment

until they reached a criterion level of performance. This train-until-criterion procedure led to

the high-variability condition participants tending to complete a larger number of training trials

before switching to the testing stage. More recent work (Hu & Nosofsky, 2024), also used dot

pattern categories, but matched the number of training trials across conditions. Under this pro-

cedure, higher-variability participants tended to reach lower levels of performance by the end of

the training stage. The results in the testing phase were the opposite of Posner and Keele (1968),

with the low-variability training group showing superior generalization to novel high-distortion

patterns (as well as generalization to novel patterns of low or medium distortion levels). How-

ever, whether this discrepancy is solely a result of the different training procedures is unclear,

as the studies also differed in the nature of the prototype patterns used. Posner and Keele (1968)
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utilized simpler, recognizable prototypes (e.g., a triangle, the letter M, the letter F), while Hu and

Nosofsky (2024) employed random prototype patterns.

Recent studies have also begun utilizing more complex or realistic sitmuli when assessing

the influence of variability on category learning. Wahlheim et al. (2012) conducted one such study.

In a within-participants design, participants were trained on bird categories with either high rep-

etitions of a few exemplars, or few repetitions of many exemplars. Across four different exper-

iments, which were conducted to address an unrelated question on metacognitive judgements,

the researchers consistently found that participants generalized better to novel species follow-

ing training with more unique exemplars (i.e. higher variability), while high repetition training

produced significantly better performance categorizing the specific species they had trained on.

A variability advantage was also found in the relatively complex domain of rock categorization

(Nosofsky et al., 2019). For 10 different rock categories, participants were trained with either

many repetitions of 3 unique examples of each category, or few repetitions of 9 unique examples,

with an equal number of total training trials in each group (the design also included 2 other con-

ditions less amenable to considering the impact of variation). The high-variability group, trained

with 9 unique examples, showed significantly better generalization performance than the other

conditions.

A distinct sub-literature within the category learning domain has examined how the vari-

ability or dispersion of the categories themselves influences generalization to ambiguous regions

of the category space (e.g., the region between the two categories). The general approach is to

train participants with examples from a high variability category and a low variability category.

Participants are then tested with novel items located within ambiguous regions of the category

space which allow the experimenters to assess whether the difference in category variability
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influenced how far participants generalize the category boundaries. A. L. Cohen et al. (2001)

conducted two experiments with this basic paradigm. In experiment 1, a low variability cate-

gory composed of 1 instance was compared against a high-variability category of 2 instances in

one condition, and 7 instances in another. In experiment 2 both categories were composed of

3 instances, but for the low-variability group the instances were clustered close to each other,

whereas the high-variability groups instances were spread much further apart. Participants were

tested on an ambiguous novel instance that was located in between the two trained categories.

Both experiments provided evidence that participants were much more likely to categorize the

novel middle stimulus into the category with greater variation.

Further observations of widened generalization following varied training have since been

observed in numerous investigations (Hahn et al., 2005; Hosch et al., 2023; Hsu & Griffiths, 2010;

Perlman et al., 2012; Sakamoto et al., 2008; but see Stewart & Chater, 2002; L.-X. Yang & Wu,

2014; and Seitz et al., 2023). The results of Sakamoto et al. (2008) are noteworthy. They first

reproduced the basic finding of participants being more likely to categorize an unknown middle

stimulus into a training category with higher variability. In a second experiment, they held the

variability between the two training categories constant and instead manipulated the training

sequence, such that the examples of one category appeared in an ordered fashion, with very

small changes from one example to the other (the stimuli were lines that varied only in length),

whereas examples in the alternate category were shown in a random order and thus included

larger jumps in the stimulus space from trial to trial. They found that the middle stimulus was

more likely to be categorized into the category that had been learned with a random sequence,

which was attributed to an increased perception of variability which resulted from the larger trial

to trial discrepancies.
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The work of Hahn et al. (2005), is also of particular interest to the present work. Their ex-

perimental design was similar to previous studies, but they included a larger set of testing items

which were used to assess generalization both between the two training categories as well as

novel items located in the outer edges of the training categories. During generalization testing,

participants were given the option to respond with “neither”, in addition to responses to the two

training categories. The “neither” response was included to test how far away in the stimulus

space participants would continue to categorize novel items as belonging to a trained category.

Consistent with prior findings, high-variability training resulted in an increased probability of

categorizing items in between the training categories as belong to the high variability category.

Additionally, participants trained with higher variability also extended the category boundary

further out into the periphery than participants trained with a lower variability category were

willing to do. The author compared a variety of similarity-based models based around the Gen-

eralized Context Model (Nosofsky, 1986) to account for their results, manipulating whether a

response-bias or similarity-scaling parameter was fit separately between variability conditions.

No improvement in model fit was found by allowing the response-bias parameter to differ be-

tween groups, however the model performance did improve significantly when the similarity

scaling parameter was fit separately. The best fitting similarity-scaling parameters were such

that the high-variability group was less sensitive to the distances between stimuli, resulting in

greater similarity values between their training items and testing items. This model accounted

for both the extended generalization gradients of the varied participants, and also for their poorer

performance in a recognition condition.

Variability has also been examined in the learning of higher-order linguistic categories

(Perry et al., 2010). In nine training sessions spread out over nine weeks infants were trained on
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object labels in a naturalistic play setting. All infants were introduced to three novel objects of

the same category, with participants in the “tight” condition being exposed to three similar exem-

plars of the category, and participants in the varied condition being exposed to three dissimilar

objects of the same category. Importantly, the similarity of the objects was carefully controlled

for by having a separate group of adult subjects provide pairwise similarity judgements of the

category objects prior to the study onset. Multidimensional scaling was then performed to obtain

the coordinates of the objects psychological space, and out of the 10 objects for each category,

the 3 most similar objects were selected for the tight group and the three least similar objects for

the varied group, with the leftover four objects being retained for testing. By the end of the nine

weeks, all of the infants had learned the labels of the training objects. In the testing phase, the

varied group demonstrated superior ability to correctly generalize the object labels to untrained

exemplars of the same category. More interesting was the superior performance of the varied

group on a higher order generalization task – such that they were able to appropriately general-

ize the bias they had learned during training for attending to the shape of objects to novel solid

objects, but not to non-solids. The tight training group, on the other hand, tended to overgener-

alize the shape bias, leading the researchers to suggest that the varied training induced a more

context-sensitive understanding of when to apply their knowledge.

Of course, the relationship between training variability and transfer is unlikely to be a

simple function wherein increased variation is always beneficial. Numerous studies have found

null, or in some cases negative effects of training variation (DeLosh et al., 1997; Sinkeviciute et al.,

2019; Van Rossum, 1990; Wrisberg et al., 1987), and many more have suggested that the benefits of

variability may depend on additional factors such as prior task experience, the order of training

trials, or the type of transfer being measured (Berniker et al., 2014; Braithwaite & Goldstone, 2015;
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Hahn et al., 2005; Lavan et al., 2019; North et al., 2019; Sadakata & McQueen, 2014; Zaman et al.,

2021).

In an example of a more complex influence of training variation, (Braithwaite & Gold-

stone, 2015) trained participants on example problems involving the concept of sampling with

replacement (SWR). Training consisted of examples that were either highly similar in their se-

mantic context (e.g., all involving people selecting objects) or in which the surface features were

varied between examples (e.g., people choosing objects AND objects selected in a sequence). The

experimenters also surveyed how much prior knowledge each participant had with SWR. They

found that whether variation was beneficial depended on the prior knowledge of the participants

– such that participants with some prior knowledge benefited from varied training, whereas par-

ticipants with minimal prior knowledge performed better after training with similar examples.

The authors hypothesized that in order to benefit from varied examples, participants must be

able to detect the structure common to the diverse examples, and that participants with prior

knowledge are more likely to be sensitive to such structure, and thus to benefit from varied train-

ing. To test this hypothesis more directly, the authors conducted a 2nd experiment, wherein they

controlled prior knowledge by exposing some subjects to a short graphical or verbal pre-training

lesson, designed to increase sensitivity to the training examples. Consistent with their hypoth-

esis, participants exposed to the structural sensitivity pre-training benefited more from varied

training than the controls participants who benefited more from training with similar examples.

Interactions between prior experience and the influence of varied training have also been ob-

served in sensorimotor learning (Del Rey et al., 1982; Guadagnoli et al., 1999). Del Rey et al. (1982)

recruited participants who self-reported either extensive, or very little experience with athletic

activities, and then trained participants on a coincident timing task under with either a single
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constant training velocity, with one of several varied training procedures. Unsurprisingly, ath-

lete participants had superior performance during training, regardless of condition, and training

performance was superior for all subjects in the constant group. Of greater interest is the pattern

of testing results from novel transfer conditions. Among the athlete-participants, transfer per-

formance was best for those who received variable training. Non-athletes showed the opposite

pattern, with superior performance for those who had constant training.

Existing Theoretical Frameworks

A number of theoretical frameworks have been proposed to conceptually explain the ef-

fects of varied training on learning and generalization. Schema theory (described in more detail

above), posts that varied practice leads to the formation of more flexible motor schemas, which

then facilitate generalization (Schmidt, 1975). The desirable difficulties framework (Bjork & Bjork,

2011; Soderstrom & Bjork, 2015) proposes that variable practice conditions may impair initial per-

formance but then enhance longer-term retention and transfer. Similarly, the challenge point

framework (Guadagnoli & Lee, 2004) contends that training variation induces optimal learning

occurs insofar as it causes the difficulty of practice tasks to be appropriately matched to the

learner’s capabilities, but may also be detrimental if the amount of variation causes the task to

be too difficult.

While these frameworks offer valuable conceptual accounts, there has been a limited ap-

plication of computational modeling efforts aimed at quantitatively assessing and comparing the

learning and generalization mechanisms which may be underlying the influence of variability in

visuomotor skill learning. In contrast, the effects of variability have received more formal com-

putational treatment in other domains, such as category learning (Hahn et al., 2005, @huHigh-
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variabilityTrainingDoes2024), language learning (Jones & Brandt, 2020), and function learning

(DeLosh et al., 1997). A primary goal of the current dissertation is to to address this gap by adapt-

ing and applying modeling approaches from these other domains to investigate the effects of

training variability in visuomotor skill learning and function learning tasks.

The current work

The overarching purpose of this dissertation is to investigate the effects of training vari-

ability on learning and generalization within visuomotor skill learning and function learning.

Our investigation is structured into two main projects, each employing distinct experimental

paradigms and computational modeling frameworks to elucidate how and when variability in

training enhances or impedes subsequent generalization.

In Project 1, we investigated the influence of varied practice in a simple visuomotor pro-

jectile launching task. Experiments 1 and 2 compared the performance of constant and varied

training groups to assess potential benefits of variability on transfer to novel testing conditions.

To account for the observed empirical effects, we introduced the Instance-based Generalization

with Adaptive Similarity (IGAS) model. IGAS provides a novel computational approach for quan-

tifying the similarity between training experiences and transfer conditions, while also allowing

for variability to influence the generalization gradient itself.

Project 2 shifted focus to the domain of function learning by employing a visuomotor

extrapolation task. Across three experiments, we examined how constant and varied training

regimes affected learning, discrimination between stimuli, and the ability to extrapolate to novel

regions of the function’s input space. To model human performance in this task, we fit the influ-
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ential Associative Learning Model (ALM) and the Extrapolation-Association Model (EXAM) to

individual participant data using advanced Bayesian parameter estimation techniques.
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Project 1

Abstract

Exposing learners to variability during training has been demonstrated to improve per-

formance in subsequent transfer testing. Such variability benefits are often accounted for by

assuming that learners are developing some general task schema or structure. However, much

of this research has neglected to account for differences in similarity between varied and con-

stant training conditions. In a between-groups manipulation, we trained participants on a simple

projectile launching task, with either varied or constant conditions. We replicate previous find-

ings showing a transfer advantage of varied over constant training. Furthermore, we show that a

standard similarity model is insufficient to account for the benefits of variation, but, if the model

is adjusted to assume that varied learners are tuned towards a broader generalization gradient,

then a similarity-based model is sufficient to explain the observed benefits of variation. Our re-

sults therefore suggest that some variability benefits can be accommodated within instance-based

models without positing the learning of some schemata or structure.

Introduction

Similarity and instance-based approaches to transfer of learning

Early models of learning often assumed that discrete experiences with some task or cate-

gory were not stored individually in memory, but instead promoted the formation of a summary

representation, often referred to as a prototype or schema, and that exposure to novel examples

would then prompt the retrieval of whichever preexisting prototype was most similar. In addi-

tion to being a landmark study on the influence of training variability, Posner and Keele (1968)

(described above) also put forward an influential argument concerning the nature of the mental
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representations acquired during learning - namely that learners tend to abstract a prototype, or

aggregate representation of the dot pattern categories, rather than encoding each individual stim-

uli. Recall that participants are trained on only on distortions of the category prototypes (e.g.,

low, medium or high distortions), never encountering the exact prototypes during the training

stage. Then, in the testing phase, participants are tested with the prototype patterns, their old

training items, and novel low, medium and high distortions. The authors found that participants

had the highest testing accuracy for the previously unseen prototype patterns, followed by the

old training items, and then the novel low, medium and high distortions. The authors interpreted

this pattern as evidence that participants had acquired prototype representation of the category,

as opposed to storing each individual training instance, and that generalization was based on the

similarity of the testing items to the learned prototype representations. Posner and Keele (1968)

has been extremely influential, and continues to be cited as evidence that prototype abstraction

underlies the benefits of varied training. It’s also referenced as a key influence in the development

of the “Schema Theory of Motor Learning” Schmidt (1975), which in turn influenced decades of

research on the potential benefits of varied training in motor skill learning. However a number

of the core assumptions utilized by Posner and Keele (1968) were later called into question both

empirically and with competing theoretical accounts (Hintzman, 1984, 1986; Knapp & Anderson,

1984; McClelland & Rumelhart, 1985; Nosofsky & Kruschke, 1992; Palmeri & Nosofsky, 2001; Zaki

& Nosofsky, 2007). Palmeri and Nosofsky (2001) demonstrated both the dangers of assuming

that psychological representations mimic the metric stimulus space, as well the viability of mod-

els with simpler representational assumptions. These authors conducted a near replication of the

Posner and Keele (1968) study, but also had participants provide similarity judgements of the dot

pattern stimuli after completing the training phase. A multidimensional scaling analysis of the
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similarity judgements revelead that the psychological representations of the prototype stimuli

were not located in the middle of the training stimuli, but were instead extreme points in the

psychological space. The authors also demonstrated the generalization patterns of Posner and

Keele (1968) could be accounted for by an exemplar-based model, without any need to assume

the abstraction of a prototype.

Instance-based, or exemplar-based models generally assume that learners encode each

experience with a task as a separate instance/exemplar/trace, and that each encoded trace is in

turn compared against novel stimuli (Estes, 1994; Hintzman, 1984; Jamieson et al., 2022; Medin &

Schaffer, 1978; Nosofsky, 1986). As the number of stored instances increases, so does the likeli-

hood that some previously stored instance will be retrieved to aid in the performance of a novel

task. Stored instances are retrieved in the context of novel stimuli or tasks if they are sufficiently

similar, thus suggesting that the process of computing similarity is of central importance to gen-

eralization.

Similarity, defined in this literature as a function of psychological distance between in-

stances or categories, has provided a successful account of generalization across numerous tasks

and domains. In an influential study demonstrating an ordinal similarity effect, experimenters

employed a numerosity judgment task in which participants quickly report the number of dots

flashed on a screen. Performance (in terms of response times to new patterns) on novel dot

configurations varied as an inverse function of their similarity to previously trained dot con-

figurations Palmeri (1997). That is, performance was better on novel configurations moderately

similar to trained configurations than to configurations with low-similarity, and also better on

low-similarity configurations than to even less similar, unrelated configurations. Instance-based

similarity approaches have had some success accounting for performance in certain sub-domains
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of motor learning (R. G. Cohen& Rosenbaum, 2004; Crump& Logan, 2010; Meigh et al., 2018; Pol-

drack et al., 1999; Wifall et al., 2017). Crump and Logan (2010) trained participants to type words

on an unfamiliar keyboard, while constraining the letters composing the training words to a pre-

specified letter set. Following training, typing speed was tested on previously experienced words

composed of previously experienced letters; novel words composed of letters from the trained

letter set; and novel words composed of letters from an untrained letter set. Consistent with an

instance-based account, transfer performance was graded such that participants were fastest at

typing the words they had previously trained on, followed by novel words composed of letters

they had trained on, and slowest performance for new words composed of untrained letters.

Issues with Previous Research

Although the benefits of training variation in visuomotor skill learning have been ob-

served many times, null findings have also been repeatedly found, leading some researchers to

question the veracity of the variability of practice hypothesis (K. M. Newell, 2003; Van Rossum,

1990). Critics have also pointed out that investigations of the effects of training variability, of

the sort described above, often fail to control for the effect of similarity between training and

testing conditions. For training tasks in which participants have numerous degrees of freedom

(e.g., projectile throwing tasks where participants control the x and y velocity of the projectile),

varied groups are likely to experience a wider range of the task space over the course of their

training (e.g., more unique combinations of x and y velocities). Experimenters may attempt to

account for this possibility by ensuring that the training location(s) of the varied and constant

groups are an equal distance away from the eventual transfer locations, such that their training

throws are, on average, equally similar to throws that would lead to good performance at the

transfer locations. However, even this level of experimental control may still be insufficient to
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rule out the effect of similarity on transfer. Given that psychological similarity is typically best

described as either a Gaussian or exponentially decaying function of psychological distance (En-

nis et al., 1988; Ghahramani et al., 1996; Logan, 1988; Nosofsky, 1992; Shepard, 1987; Thoroughman

& Taylor, 2005), it is plausible that a subset of the most similar training instances could have a

disproportionate impact on generalization to transfer conditions, even if the average distance

between training and transfer conditions is identical between groups. Figure 1 demonstrates the

consequences of a generalization gradient that drops off as a Gaussian function of distance from

training, as compared to a linear drop-off.
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Figure 1: Left panel- Generalization predicted from a simple model that assumes a linear gen-
eralization function. A varied group (red vertical lines indicate the 2 training locations) trained
from positions 400 and 800, and a constant group (blue vertical line), trained from position 600.
Right panel- if a Gaussian generalization function is assumed, then varied training (400, 800) is
predicted to result in better generalization to positions close to 400 and 800 than does constant
training at 600. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In addition to largely overlooking the potential for non-linear generalization to confound

interpretations of training manipulations, the visuomotor skill learning literature also rarely con-
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siders alternatives to schema representations (Chamberlin & Magill, 1992b). Although schema-

theory remains influential within certain literatures, instance or exemplar-based models have

accounted for human behavior across myriad domains (Jamieson et al., 2022; Logan, 2002). As

mentioned above, instance based accounts have been shown to perform well on a variety of dif-

ferent tasks with motoric components (Crump & Logan, 2010; Gandolfo et al., 1996; Meigh et al.,

2018; Rosenbaum et al., 1995; van Dam & Ernst, 2015). However, such accounts have received lit-

tle attention within the subdomain of visuomotor skill learning focused on the benefits of varied

training.

The present work examines whether the commonly observed benefits of varied training

can be accounted for by a theoretrically motivated measure of the similarity between training

throws and the testing solution space. We first attempt to replicate previous work finding an ad-

vantage of varied training over constant training in a projectile launching task. We then examine

the extent to which this advantage can be explained by an instance-based similarity model.

Experiment 1

Methods

Sample Size Estimation. To obtain an independent estimate of effect size, we identi-

fied previous investigations which included between-subjects contrasts of varied and constant

conditions following training on an accuracy based projectile launching task (Chua et al., 2019;

Goodwin et al., 1998; Kerr & Booth, 1978; Wulf, 1991). We then averaged effects across these stud-

ies, yielding a Cohen’s f =.43. The GPower 3.1 software package (Faul et al., 2009) was then used

to determine that a power of 80% requires a sample size of at least 23 participants per condition.
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All experiments reported in the present manuscript exceed this minimum number of participants

per condition.

Participants. Participants were recruited from an undergraduate population that is 63%

female and consists almost entirely of individuals aged 18 to 22 years. A total of 110 Indiana

University psychology students participated in Experiment 1. We subsequently excluded 34 par-

ticipants for poor performance on one of the dependent measures of the task (2.5-3 standard

deviations worse than the median subject at the task) or for displaying a pattern of responses

that was clearly indicative of a lack of engagement with the task (e.g., simply dropping the ball

on each trial rather than throwing it at the target), or for reporting that they completed the ex-

periment on a phone or tablet device, despite the instructions not to use one of these devices. A

total of 74 participants were retained for the final analyses, 35 in the varied group and 39 in the

constant group.

Task. The experimental task was programmed in JavaScript, using packages from the

Phaser physics engine (https://phaser.io) and the jsPsych library (de Leeuw, 2015). The stimuli,

presented on a black background, consisted of a circular blue ball – controlled by the participant

via the mouse or trackpad cursor; a rectangular green target; a red rectangular barrier located

between the ball and the target; and an orange square within which the participant could control

the ball before releasing it in a throw towards the target. Because the task was administered

online, the absolute distance between stimuli could vary depending on the size of the computer

monitor being used, but the relative distance between the stimuli was held constant. Likewise,

the distance between the center of the target and the training and testing locations was scaled

such that relative distances were preserved regardless of screen size. For the sake of brevity,
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subsequent mentions of this relative distance between stimuli, or the position where the ball

landed in relation to the center of the target, will be referred to simply as distance. Figure 2

displays the layout of the task, as it would appear to a participant at the start of a trial, with the

ball appearing in the center of the orange square. Using a mouse or trackpad, participants click

down on the ball to take control of the ball, connecting the movement of the ball to the movement

of the cursor. Participants can then “wind up” the ball by dragging it (within the confines of the

orange square) and then launch the ball by releasing the cursor. If the ball does not land on the

target, participants are presented with feedback in red text at the top right of the screen, on how

many units away they were from the center of the target. If the ball was thrown outside of the

boundary of the screen participants are given feedback as to how far away from the target center

the ball would have been if it had continued its trajectory. If the ball strikes the barrier (from the

side or by landing on top), feedback is presented telling participants to avoid hitting the barrier.

If participants drag the ball outside of the orange square before releasing it, the trial terminates,

and they are reminded to release the ball within the orange square. If the ball lands on the target,

feedback is presented in green text, confirming that the target was hit, and presenting additional

feedback on how many units away the ball was from the exact center of the target.

Link to abbrevaited example of task.

Results

Data Processing and Statistical Packages. To prepare the data, we first removed trials

that were not easily interpretable as performance indicators in our task. Removed trials included:

1) those in which participants dragged the ball outside of the orange starting box without releas-

ing it, 2) trials in which participants clicked on the ball, and then immediately released it, causing

the ball to drop straight down, 3) outlier trials in which the ball was thrown more than 2.5 stan-

https://pcl.sitehost.iu.edu/tg/demos/igas_expt1_demo.html
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Figure 2: The stimuli of the task consisted of a blue ball, which the participants would launch
at the green target, while avoiding the red barrier. On each trial, the ball would appear in the
center of the orange square, with the position of the orange square varying between experimental
conditions. Participants were constrained to release the ball within the square.

dard deviations further than the average throw (calculated separately for each throwing position),

and 4) trials in which the ball struck the barrier. The primary measure of performance used in all

analyses was the absolute distance away from the center of the target. The absolute distance was

calculated on every trial, and then averaged within each subject to yield a single performance

score, for each position. A consistent pattern across training and testing phases in both exper-

iments was for participants to perform worse from throwing positions further away from the

target – a pattern which we refer to as the difficulty of the positions. However, there were no

interactions between throwing position and training conditions, allowing us to collapse across

positions in cases where contrasts for specific positions were not of interest. All data process-

ing and statistical analyses were performed in R version 4.32 (Team, 2020). ANOVAs for group

comparisons were performed using the rstatix package (Kassambara, 2021).

Training Phase. Figure 3 below shows aggregate training performance binned into

three stages representing the beginning, middle, and end of the training phase. Because the

two conditions trained from target distances that were not equally difficult, it was not possible

to directly compare performance between conditions in the training phase. Our focus for the
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training data analysis was instead to establish that participants did improve their performance

over the course of training, and to examine whether there was any interaction between training

stage and condition. Descriptive statistics for the intermittent testing phase are provided in the

supplementary materials.

We performed an ANOVA comparison with stage as a within-group factor and condition

as between-group factor. The analysis revealed a significant effect of training stage F(2,142)=62.4,

p<.001, 𝜂2𝐺 = .17, such that performance improved over the course of training. There was no

significant effect of condition F(1,71)=1.42, p=.24, 𝜂2𝐺 = .02, and no significant interaction between

condition and training stage, F(2,142)=.10, p=.91, 𝜂2𝐺 < .01.
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Figure 3: Training performance for varied and constant participants binned into three stages.
Shorter bars indicate better performance (ball landing closer to the center of the target). Error
bars indicate standard error of the mean.

Testing Phase. In Experiment 1, a single constant-trained group was compared against

a single varied-trained group. At the transfer phase, all participants were tested from 3 positions:
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1) the positions(s) from their own training, 2) the training position(s) of the other group, and 3) a

position novel to both groups. Overall, group performance was compared with a mixed type III

ANOVA, with condition (varied vs. constant) as a between-subject factor and throwing location

as a within-subject variable. The effect of throwing position was strong, F(3,213) = 56.12, p<.001,

η2G = .23. The effect of training condition was significant F(1,71)=8.19, p<.01, η2G = .07. There

was no significant interaction between group and position, F(3,213)=1.81, p=.15, η2G = .01.
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Figure 4: Testing performance for each of the 4 testing positions, compared between training
conditions. Positions 610 and 910 were trained on by the varied group, and novel for the constant
group. Position 760was trained on by the constant group, and novel for the varied group. Position
835 was novel for both groups. Shorter bars are indicative of better performance (the ball landing
closer to the center of the target). Error bars indicate standard error of the mean.
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Table 1: Testing performance for varied and constant groups in experiment 1. Mean absolute
deviation from the center of the target, with standard deviations in parenthesis.

Position Constant Varied

610 132.48(50.85) 104.2(38.92)

760 207.26(89.19) 167.12(72.29)

835 249.13(105.92) 197.22(109.71)

910 289.36(122.48) 212.86(113.93)

Discussion

In Experiment 1, we found that varied training resulted in superior testing performance

than constant training, from both a position novel to both groups, and from the position at which

the constant group was trained, which was novel to the varied condition. The superiority of

varied training over constant training even at the constant training position is of particular note,

given that testing at this position should have been highly similar for participants in the constant

condition. It should also be noted, though, that testing at the constant trained position is not

exactly identical to training from that position, given that the context of testing is different in

several ways from that of training, such as the testing trials from the different positions being

intermixed, aswell as a simple change in context as a function of time. Such contextual differences

will be further considered in the General Discussion.

In addition to the variation of throwing position during training, the participants in the

varied condition of Experiment 1 also received training practice from the closest/easiest position,

as well as from the furthest/most difficult position that would later be encountered by all par-
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ticipants during testing. The varied condition also had the potential advantage of interpolating

both of the novel positions from which they would later be tested. Experiment 2 thus sought to

address these issues by comparing a varied condition to multiple constant conditions.

Experiment 2

In Experiment 2, we sought to replicate our findings from Experiment 1 with a new sample

of participants, while also addressing the possibility of the pattern of results in Experiment 1 being

explained by some idiosyncrasy of the particular training location of the constant group relative

to the varied group. To this end, Experiment 2 employed the same basic procedure as Experiment

1, but was designed with six separate constant groups each trained from one of six different

locations (400, 500, 625, 675, 800, or 900), and a varied group trained from two locations (500

and 800). Participants in all seven groups were then tested from each of the 6 unique positions.

Methods

Participants. A total of 306 Indiana University psychology students participated in Ex-

periment 2, which was also conducted online. As was the case in Experiment 1, the undergraduate

population from which we recruited participants was 63% female and primarily composed of 18–

22-year-old individuals. Using the same procedure as Experiment 1, we excluded 98 participants

for exceptionally poor performance at one of the dependent measures of the task, or for dis-

playing a pattern of responses indicative of a lack of engagement with the task. A total of 208

participants were included in the final analyses with 31 in the varied group and 32, 28, 37, 25, 29,

26 participants in the constant groups training from location 400, 500, 625, 675, 800, and 900,

respectively. All participants were compensated with course credit.
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Task and Procedure. The task of Experiment 2 was identical to that of Experiment 1,

in all but some minor adjustments to the height of the barrier, and the relative distance between

the barrier and the target. Additionally, the intermittent testing trials featured in experiment 1

were not utilized in Experiment 2. An abbreviated demo of the task used for Experiment 2 can

be found at (https://pcl.sitehost.iu.edu/tg/demos/igas_expt2_demo.html).

The procedure for Experiment 2 was also quite similar to Experiment 1. Participants com-

pleted 140 training trials, all of which were from the same position for the constant groups and

split evenly (70 trials each - randomized) for the varied group. In the testing phase, participants

completed 30 trials from each of the six locations that had been used separately across each of the

constant groups during training. Each of the constant groups thus experienced one trained loca-

tion and five novel throwing locations in the testing phase, while the varied group experiences 2

previously trained, and 4 novel locations.

Results

Data Processing and Statistical Packages. After confirming that condition and throw-

ing position did not have any significant interactions, we standardized performance within each

position, and then average across position to yield a single performance measure per participant.

This standardization did not influence our pattern of results. As in Experiment 1, we performed

type III ANOVAs due to our unbalanced design, however the pattern of results presented below is

not altered if type 1 or type III tests are used instead. The statistical software for the primary anal-

yses was the same as for Experiment 1. Individual learning rates in the testing phase, compared

between groups in the supplementary analyses, were fit using the TEfit package in R (Cochrane,

2020).
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Training Phase. The different training conditions trained from positions that were not

equivalently difficult and are thus not easily amenable to comparison. As previously stated, the

primary interest of the training data is confirmation that some learning did occur. Figure 5 depicts

the training performance of the varied group alongside that of the aggregate of the six constant

groups (5a), and each of the 6 separate constant groups (5b). AnANOVA comparisonwith training

stage (beginning, middle, end) as a within-group factor and group (the varied condition vs. the 6

constant conditions collapsed together) as a between-subject factor revealed no significant effect

of group on training performance, F(1,206)=.55,p=.49, 𝜂2𝐺 <.01, a significant effect of training stage

F(2,412)=77.91, p<.001, 𝜂2𝐺 =.05, and no significant interaction between group and training stage,

F(2,412)=.489 p=.61, 𝜂2𝐺 <.01. We also tested for a difference in training performance between

the varied group and the two constant groups that trained matching throwing positions (i.e., the

constant groups training from position 500, and position 800). The results of our ANOVA on

this limited dataset mirrors that of the full-group analysis, with no significant effect of group

F(1,86)=.48, p=.49, 𝜂2𝐺 <.01, a significant effect of training stage F(2,172)=56.29, p<.001, 𝜂2𝐺 =.11, and

no significant interaction between group and training stage, F(2,172)=.341 p=.71, 𝜂2𝐺 <.01.

Testing Phase. In Experiment 2, a single varied condition (trained from two positions,

500 and 800), was compared against six separate constant groups (trained from a single position,

400, 500, 625, 675, 800 or 900). For the testing phase, all participants were tested from all six

positions, four of which were novel for the varied condition, and five of which were novel for

each of the constant groups. For a general comparison, we took the absolute deviations for each

throwing position and computed standardized scores across all participants, and then averaged

across throwing position. The six constant groups were then collapsed together allowing us to



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 48

constant varied

Beginning Middle End Beginning Middle End

0

100

200

300

Training Stage

M
ea

n 
D

is
ta

nc
e 

F
ro

m
 C

en
te

r 
O

f T
ar

ge
t

Training Stage

Beginning

Middle

End

A

constant varied

400 500 625 675 800 900 400 500 625 675 800 900

0

100

200

300

400

Training Location(s)

M
ea

n 
D

is
ta

nc
e 

F
ro

m
 C

en
te

r 
O

f T
ar

ge
t

Training Stage

Beginning

Middle

End

B

Figure 5: Training performance for the six constant conditions, and the varied condition, binned
into three stages. On the left side, the six constant groups are averaged together, as are the two
training positions for the varied group. On the right side, the six constant groups are shown
separately, with each set of bars representing the beginning, middle, and end of training for a
single constant group that trained from the position indicated on the x-axis. Figure 5b also shows
training performance separately for both of the throwing locations trained by the varied group.
Error bars indicate standard error of the mean.
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make a simple comparison between training conditions (constant vs. varied). A type III between-

subjects ANOVA was performed, yielding a significant effect of condition F(1,206)=4.33, p=.039,

𝜂2𝐺 =.02. Descriptive statistics for each condition are shown in table 2. In Figure 6 visualizes the

consistent advantage of the varied condition over the constant groups across the testing positions.

Figure 6 shows performance between the varied condition and the individual constant groups.
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Figure 6: Testing phase performance from each of the six testing positions. The six constant con-
ditions are averaged together into a single constant group, compared against the single varied-
trained group.B) Transfer performance from each of the 6 throwing locations from which all
participants were tested. Each bar represents performance from one of seven distinct training
groups (six constant groups in red, one varied group in blue). The x axis labels indicate the loca-
tion(s) from which each group trained. Lower values along the y axis reflect better performance
at the task (closer distance to target center). Error bars indicate standard error of the mean.
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Table 2: Transfer performance from each of the 6 throwing locations from which all participants
were tested. Each bar represents performance from one of seven distinct training groups (six
constant groups in red, one varied group in blue). The x axis labels indicate the location(s) from
which each group trained. Lower values along the y axis reflect better performance at the task
(closer distance to target center). Error bars indicate standard error of the mean.

Position Constant Varied

400 100.59(46.3) 83.92(33.76)

500 152.28(69.82) 134.38(61.38)

625 211.21(90.95) 183.51(75.92)

675 233.32(93.35) 206.32(94.64)

800 283.24(102.85) 242.65(89.73)

900 343.51(114.33) 289.62(110.07)

Next, we compared the testing performance of constant and varied groups from only

positions that participants had not encountered during training. Constant participants each had

5 novel positions, whereas varied participants tested from 4 novel positions (400,625,675,900).

We first standardized performance within in each position, and then averaged across positions.

Here again, we found a significant effect of condition (constant vs. varied): F(1,206)=4.30, p=.039,

𝜂2𝐺 = .02 .
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Table 3: Testing performance from novel positions. Includes data only from positions that were
not encountered during the training stage (e.g., excludes positions 500 and 800 for the varied
group, and one of the six locations for each of the constant groups). Table presents Mean absolute
deviations from the center of the target, and standard deviations in parenthesis.

Position Constant Varied

400 98.84(45.31) 83.92(33.76)

500 152.12(69.94) NA

625 212.91(92.76) 183.51(75.92)

675 232.9(95.53) 206.32(94.64)

800 285.91(102.81) NA

900 346.96(111.35) 289.62(110.07)

Finally, corresponding to the comparison of position 760 from Experiment 1, we compared

the test performance of the varied group against the constant group from only the positions that

the constant groups trained. Such positions were novel to the varied group (thus this analysis

omitted two constant groups that trained from positions 500 or 800 as those positions were not

novel to the varied group). Figure 7 displays the particular subset of comparisons utilized for

this analysis. Again, we standardized performance within each position before performing the

analyses on the aggregated data. In this case, the effect of condition did not reach statistical

significance F(1,149)=3.14, p=.079, 𝜂2𝐺 = .02. Table 4 provides descriptive statistics.
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Figure 7: A comparison of throwing location that are identical to those trained by the constant
participants (e.g., constant participants trained at position 900, tested from position 900), which
are also novel to the varied-trained participants (thus excluding positions 500 and 800). Error
bars indicate standard error of the mean.

Table 4: Testing performance from the locations trained by constant participants and novel to
varied participants. Locations 500 and 800 are not included as these were trained by the varied
participants. Table presents Mean absolute deviation from the center of the target, and standard
deviations in parenthesis.

Position Constant Varied

400 108.85(50.63) 83.92(33.76)

625 204.75(84.66) 183.51(75.92)

675 235.75(81.15) 206.32(94.64)

900 323.5(130.9) 289.62(110.07)
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Experiment 2 Discussion

The results of Experiment 2 largely conform to the findings of Experiment 1. Participants

in both varied and constant conditions improved at the task during the training phase. We did not

observe the common finding of training under varied conditions producing worse performance

during acquisition than training under constant conditions (Catalano & Kleiner, 1984; Wrisberg

et al., 1987), which has been suggested to relate to the subsequent benefits of varied training

in retention and generalization testing (Soderstrom & Bjork, 2015). However our finding of no

difference in training performance between constant and varied groups has been observed in

previous work (Chua et al., 2019; Moxley, 1979; Pigott & Shapiro, 1984).

In the testing phase, our varied group significantly outperformed the constant conditions

in both a general comparison, and in an analysis limited to novel throwing positions. The ob-

served benefit of varied over constant training echoes the findings of many previous visuomotor

skill learning studies that have continued to emerge since the introduction of Schmidt’s influen-

tial Schema Theory (Catalano & Kleiner, 1984; Chua et al., 2019; Goodwin et al., 1998; McCracken

& Stelmach, 1977; Moxley, 1979; K. Newell & Shapiro, 1976; Pigott & Shapiro, 1984; Roller et al.,

2001; Schmidt, 1975; Willey & Liu, 2018b; Wrisberg et al., 1987; Wulf, 1991). We also join a much

smaller set of research to observe this pattern in a computerized task (Seow et al., 2019). One

departure from the experiment 1 findings concerns the pattern wherein the varied group out-

performed the constant group even from the training position of the constant group, which was

significant in experiment 1, but did not reach significance in experiment 2. Although this pattern

has been observed elsewhere in the literature (Goode et al., 2008; Kerr & Booth, 1978), the over-
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all evidence for this effect appears to be far weaker than for the more general benefit of varied

training in conditions novel to all training groups.

Computational Model

Controlling for the similarity between training and testing. The primary goal of Experiment

2 was to examine whether the benefits of variability would persist after accounting for individ-

ual differences in the similarity between trained and tested throwing locations. To this end, we

modelled each throw as a two-dimensional point in the space of x and y velocities applied to the

projectile at the moment of release. For each participant, we took each individual training throw,

and computed the similarity between that throw and the entire population of throws within the

solution space for each of the 6 testing positions. We defined the solution space empirically as

the set of all combinations of x and y throw velocities that resulted in hitting the target. We

then summed each of the trial-level similarities to produce a single similarity for each testing

position score relating how the participant threw the ball during training and the solutions that

would result in target hits from each of the six testing positions – thus resulting in six separate

similarity scores for each participant. Figure 8 visualizes the solution space for each location and

illustrates how different combinations of x and y velocity result in successfully striking the target

from different launching positions. As illustrated in Figure 8, the solution throws represent just

a small fraction of the entire space of velocity combinations used by participants throughout the

experiment.

For each individual trial, the Euclidean distance (Equation 1) was computed between the

velocity components (x and y) of that trial and the velocity components of each individual solution

throw for each of the 6 positions fromwhich participants would be tested in the final phase of the



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 55

200

300

400

500

100 200 300
X Release Velocity

Y
 R

el
ea

se
 V

el
oc

ity

Target Hit Thrown from Position:

400

500

625

675

800

900

A

0

500

1000

0 250 500 750 1000
X Release Velocity

Y
 R

el
ea

se
 V

el
oc

ity

Target Hit or Miss From Position:

400

500

625

675

800

900

Missed Target

B

Figure 8: A) A visual representation of the combinations of throw parameters (x and y velocities
applied to the ball at launch), which resulted in target hits during the testing phase. This empirical
solution space was compiled from all of the participants in Experiment 2. B) shows the solution
spacewithin the context of all of the throwsmade throughout the testing phase of the experiment.
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study. The P parameter in Equation 1 is set equal to 2, reflecting a Gaussian similarity gradient.

Then, as per an instance-based model of similarity (Logan, 2002; Nosofsky, 1992), these distances

were multiplied by a sensitivity parameter, c, and then exponentiated to yield a similarity value.

The parameter c controls the rate with which similarity-based generalization drops off as the

Euclidean distance between two throws in x- and y-velocity space increases. If c has a large

value, then even a small difference between two throws’ velocities greatly decreases the extent

of generalization from one to the other. A small value for c produces broad generalization from

one throw to another despite relatively large differences in their velocities. The similarity values

for each training individual throw made by a given participant were then summed to yield a final

similarity score, with a separate score computed for each of the 6 testing positions. The final

similarity score is construable as index of how accurate the throws a participant made during the

training phase would be for each of the testing positions.

Equation 1:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑡𝑦𝐼 ,𝐽 = ∑
𝑖=𝐼

∑
𝑗=𝐽

(𝑒−𝑐 ⋅𝑑𝑝𝑖,𝑗 )

Equation 2:

𝑑𝑖,𝑗 = √(𝑥𝑇 𝑟𝑎𝑖𝑛𝑖 − 𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗 )2 + (𝑦𝑇 𝑟𝑎𝑖𝑛𝑖 − 𝑦𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗 )2

A simple linear regression revealed that these similarity scores were significantly pre-

dictive of performance in the transfer stage, t =-15.88, p<.01, 𝑟2=.17, such that greater similarity

between training throws and solution spaces for each of the test locations resulted in better per-

formance. We then repeated the group comparisons above while including similarity as a co-

variate in the model. Comparing the varied and constant groups in testing performance from all

testing positions yielded a significant effect of similarity, F(1, 205)=85.66, p<.001, 𝜂2𝐺 =.29, and also
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a significant effect of condition (varied vs. constant), F(1, 205)=6.03, p=.015, 𝜂2𝐺 =.03. The group

comparison limited to only novel locations for the varied group pit against trained location for the

constant group resulted in a significant effect of similarity, F(1,148)=31.12, p<.001, 𝜂2𝐺 =.18 as well

as for condition F(1,148)=11.55, p<.001, 𝜂2𝐺 =.07. For all comparisons, the pattern of results was

consistent with the initial findings from Experiment 2, with the varied group still performing

significantly better than the constant group.

Fitting model parameters separately by group

To directly control for similarity in Experiment 2, we developed a model-based measure

of the similarity between training throws and testing conditions. This similarity measure was a

significant predictor of testing performance, e.g., participants whose training throws were more

similar to throws that resulted in target hits from the testing positions, tended to perform better

during the testing phase. Importantly, the similarity measure did not explain away the group-

level benefits of varied training, which remained significant in our linear model predicting testing

performance after similarity was added to the model. However, previous research has suggested

that participants may differ in their level of generalization as a function of prior experience, and

that such differences in generalization gradients can be captured by fitting the generalization pa-

rameter of an instance-based model separately to each group (Hahn et al., 2005; Lamberts, 1994).

Relatedly, the influential Bayesian generalization model developed by Tenenbaum and Griffiths

(2001) predicts that the breadth of generalization will increase when a rational agent encounters a

wider variety of examples. Following these leads, we assume that in addition to learning the task

itself, participants are also adjusting how generalizable their experience should be. Varied versus

constant participants may be expected to learn to generalize their experience to different degrees.

To accommodate this difference, the generalization parameter of the instance-based model (in the
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present case, the c parameter) can be allowed to vary between the two groups to reflect the ten-

dency of learners to adaptively tune the extent of their generalization. One specific hypothesis is

that people adaptively set a value of c to fit the variability of their training experience (Nosofsky

& Johansen, 2000; Sakamoto et al., 2006). If one’s training experience is relatively variable, as

with the variable training condition, then one might infer that future test situations will also be

variable, in which case a low value of c will allow better generalization because generalization

will drop off slowly with training-to-testing distance. Conversely, if one’s training experience

has little variability, as found in the constant training conditions, then one might adopt a high

value of c so that generalization falls off rapidly away from the trained positions.

To address this possibility, we compared the original instance-based model of similarity

fit against a modified model which separately fits the generalization parameter, c, to varied and

constant participants. To perform this parameter fitting, we used the optim function in R, and

fit the model to find the c value(s) that maximized the correlation between similarity and testing

performance.

Both models generate distinct similarity values between training and testing locations.

Much like the analyses in Experiment 2, these similarity values are regressed against testing

performance inmodels of the form shown below. Aswas the case previously, testing performance

is defined as the mean absolute distance from the center of the target (with a separate score for

each participant, from each position).

Linear models 1 and 3 both show that similarity is a significant predictor of testing perfor-

mance (p<.01). Of greater interest is the difference between linear model 2, in which similarity

is computed from a single c value fit from all participants (Similarity1c), with linear model 4,

which fits the c parameter separately between groups (Similarity2c). In linear model 2, the effect
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of training group remains significant when controlling for Similarity1c (p<.01), with the varied

group still performing significantly better. However, in linear model 4 the addition of the Similar-

ity2c predictor results in the effect of training group becoming nonsignificant (p=.40), suggesting

that the effect of varied vs. constant training is accounted for by the Similarity2c predictor. Next,

to further establish a difference between the models, we performed nested model comparisons

using ANOVA, to see if the addition of the training group parameter led to a significant improve-

ment in model performance. In the first comparison, ANOVA(Linear Model 1, Linear Model 2),

the addition of the training group predictor significantly improved the performance of the model

(F=22.07, p<.01). However, in the second model comparison, ANOVA (Linear model 3, Linear

Model 4) found no improvement in model performance with the addition of the training group

predictor (F=1.61, p=.20).

Finally, we sought to confirm that similarity values generated from the adjusted Similar-

ity2cmodel hadmore predictive power than those generated from the original Similarity1c model.

Using the BIC function in R, we compared BIC values between linear model 1 (BIC=14604.00) and

linear model 3 (BIC = 14587.64). The lower BIC value of model 3 suggests a modest advantage for

predicting performance using a similarity measure computed with two c values over similarity

computed with a single c value. When fit with separate c values, the best fitting c parameters

for the model consistently optimized such that the c value for the varied group (c=.00008) was

smaller in magnitude than the c value for the constant group(c= .00011). Recall that similarity

decreases as a Gaussian function of distance (equation 1 above), and a smaller value of c will re-

sult in a more gradual drop-off in similarity as the distance between training throws and testing

solutions increases.
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In summary, our modeling suggests that an instance-based model which assumes equiv-

alent generalization gradients between constant and varied trained participants is unable to ac-

count for the extent of benefits of varied over constant training observed at testing. The evidence

for this in the comparative model fits is that when a varied/constant dummy-coded variable for

condition is explicitly added to the model, the variable adds a significant contribution to the pre-

diction of test performance, with the variable condition yielding better performance than the con-

stant conditions. However, if the instance-based generalization model is modified to assume that

the training groups can differ in the steepness of their generalization gradient, by incorporating a

separate generalization parameter for each group, then the instance-based model can account for

our experimental results without explicitly taking training group into account. Henceforth this

model will be referred to as the Instance-based Generalization with Adaptive Similarity (IGAS)

model.

Project 1 General Discussion

Across two experiments, we found evidence in support of the benefits of variability hy-

pothesis in a simple, computerized projectile throwing task. Generalization was observed in

both constant and varied participants, in that both groups tended to perform better at novel po-

sitions in the testing phase than did participants who started with those positions in the training

phase. However, varied trained participants consistently performed better than constant trained

participants, in terms of both the testing phase in general, and in a comparison that only in-

cluded untrained positions. We also found some evidence for the less commonly observed pattern

wherein varied-trained participants outperform constant-trained participants even from condi-

tions identical to the constant group training (Goode et al., 2008; Green et al., 1995; Kerr & Booth,
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1978). In Experiment 1 varied participants performed significantly better on this identity com-

parison. In Experiment 2, the comparison was not significant initially, but became significant

after controlling for the similarity measure that incorporates only a single value for the steep-

ness of similarity-based generalization (c). Furthermore, we showed that the general pattern of

results from Experiment 2 could be parsimoniously accommodated by an instance-based similar-

ity model, but only with the assumption that constant and varied participants generalize their

training experience to different degrees. Our results thus suggest that the benefits of variation

cannot be explained by the varied-trained participants simply covering a broader range of the

task space. Rather, the modeling suggests that varied participants also learn to adaptively tune

their generalization function such that throwing locations generalizemore broadly to one another

than they do in the constant condition. A learning system could end up adopting a higher c value

in the constant than variable training conditions by monitoring the trial-by-trial variability of

the training items. The c parameter would be adapted downwards when adjacent training items

are dissimilar to each other and adapted upwards when adjacent training items are the same. In

this fashion, contextually appropriate c values could be empirically learned. This learning proce-

dure would capture the insight that if a situation has a high amount variability, then the learner

should be predisposed toward thinking that subsequent test items will also show considerable

variability, in which case generalization gradients should be broad, as is achieved by low values

for c.

Also of interest is whether the IGAS model can predict the pattern of results wherein

the varied condition outperforms the constant condition even from the position on which the

constant condition trained. Although our models were fit using all of the Experiment 2 training

and testing data, not just that of the identity comparisons, in Figure 9 we demonstrate how a
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simplified version of the IGAS model could in principle produce such a pattern. In addition to the

assumption of differential generalization between varied and constant conditions, our simplified

model makes explicit an assumption that is incorporated into the full IGAS model – namely that

even when being tested from a position identical to that which was trained, there are always

some psychological contextual differences between training and testing throws, resulting in a

non-zero dissimilarity.

As mentioned above, the idea that learners flexibly adjust their generalization gradient

based on prior experience does have precedent in the domains of category learning (Aha & Gold-

stone, 1992; Briscoe & Feldman, 2011; Hahn et al., 2005; Lamberts, 1994; Op de Beeck et al., 2008),

and sensorimotor adaptation (Marongelli & Thoroughman, 2013; Taylor & Ivry, 2013; Thorough-

man & Taylor, 2005). Lamberts (1994) showed that a simple manipulation of background knowl-

edge during a categorization test resulted in participants generalizing their training experience

more or less broadly, and moreover that such a pattern could be captured by allowing the gener-

alization parameter of an instance-based similarity model to be fit separately between conditions.

The flexible generalization parameter has also successfully accounted for generalization behavior

in cases where participants have been trained on categories that differ in their relative variability

(Hahn et al., 2005; Sakamoto et al., 2006). However, to the best of our knowledge, IGAS is the

first instance-based similarity model that has been put forward to account for the effect of varied

training in a visuomotor skill task. Although IGAS was inspired by work in the domain of cat-

egory learning, its success in a distinct domain may not be surprising in light of the numerous

prior observations that at least certain aspects of learning and generalization may operate un-

der common principles across different tasks and domains (Censor et al., 2012; Hills et al., 2010;
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Figure 9: A simple model depicting the necessity of both of two separately fit generalization
parameters, c, and a positive distance between training and testing contexts, in order for an
instance model to predict a pattern of varied training from stimuli 400 and 800 outperforming
constant training from position 600 at a test position of 600. For the top left panel, in which the
generalizationmodel assumes a single c value (-.008) for both varied and constant conditions, and
identical contexts across training and testing, the equation which generates the varied condition
is - Amount of Generalization = 𝑒(𝑐⋅|𝑥−800|)+𝑒(𝑐⋅|𝑥−400|), whereas the constant group generalization
is generated from 2 ⋅ 𝑒(𝑐⋅|𝑥−600|). For the top right panel, the c constants in the original equations
are different for the 2 conditions, with 𝑐 = −.002 for the varied condition, and 𝑐 = −.008 for
the constant condition. The bottom two panels are generated from identical equations to those
immediately above, except for the addition of extra distance (100 units) to reflect the assumption
of some change in context between training and testing conditions. Thus, the generalization
model for the varied condition in the bottom-right panel is of the form - Amount of Generalization
= 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−800|) + 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−400|) .
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Jamieson et al., 2022; Law & Gold, 2010; Roark et al., 2021; Rosenbaum et al., 2001; Vigo et al.,

2018; Wall et al., 2021; Wu et al., 2020; J. Yang et al., 2020).

Our modelling approach does differ from category learning implementations of instance-

based models in several ways. One such difference is the nature of the training instances that

are assumed to be stored. In category learning studies, instances are represented as points in a

multidimensional space of all of the attributes that define a category item (e.g., size/color/shape).

Rather than defining instances in terms of what stimuli learners experience, our approach as-

sumes that stored, motor instances reflect how they act, in terms of the velocity applied to the

ball on each throw. An advantage of many motor learning tasks is the relative ease with which

task execution variables can be directly measured (e.g., movement force, velocity, angle, posture)

in addition to the decision and response time measures that typically exhaust the data generated

from more classical cognitive tasks. Of course, whether learners actually are storing each indi-

vidual motor instance is a fundamental question beyond the scope of the current work – though

as described in the introduction there is some evidence in support of this idea (Chamberlin &

Magill, 1992a; Crump & Logan, 2010; Hommel, 1998; Meigh et al., 2018; Poldrack et al., 1999).

A particularly noteworthy instance-based model of sensory-motor behavior is the Knowledge II

model of Rosenbaum and colleagues (R. G. Cohen & Rosenbaum, 2004; Rosenbaum et al., 1995).

Knowledge II explicitly defines instances as postures (joint combinations), and is thus far more

detailed than IGAS in regards to the contents of stored instances. Knowledge II also differs from

IGAS in that learning is accounted for by both the retrieval of stored postures, and the generation

of novel postures via the modification of retrieved postures. A promising avenue for future re-

search would be to combine the adaptive similarity mechanism of IGAS with the novel instance

generation mechanisms of Knowledge II.
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Our findings also have some conceptual overlap with an earlier study on the effects of

varied training in a coincident timing task (Catalano & Kleiner, 1984). In this task, participants

observe a series of lamps lighting up consecutively, and attempt to time a button press with the

onset of the final lamp. The design consisted of four separate constant groups, each training from

a single lighting velocity, and a single varied group training with all four of the lighting velocities

used by the individual constant groups. Participantswere then split into four separate testing con-

ditions, each of which were tested from a single novel lighting velocity of varying distance from

the training conditions. The result of primary interest was that all participants performed worse

as the distance between training and testing velocity increased – a typical generalization decre-

ment. However, varied participants showed less of a decrement than did constant participants.

The authors take this result as evidence that varied training results in a less-steep generalization

gradient than does constant training. Although the experimental conclusions of Catalano and

Kleiner are similar to our own, our work is novel in that we account for our results with a cog-

nitive model, and without assuming the formation of a schema. Additionally, the way in which

Catalano and Kleiner collapse their separate constant groups together may result in similarity

confounds between varied and constant conditions that leaves their study open to methodolog-

ical criticisms, especially in light of related work which demonstrated that the extent to which

varied training may be beneficial can depend on whether the constant group they are compared

against trained from similar conditions to those later tested (Wrisberg et al., 1987). Our study

alleviates such concerns by explicitly controlling for similarity.

Limitations

A limitation of this study concerns the ordering of the testing/transfer trials at the conclu-

sion of both experiments. Participants were tested from each separate position (4 in Experiment
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1, 6 in Experiment 2) in a random, intermixed order. Because the varied group was trained from

two positions that were also randomly ordered, they may have benefited from experience with

this type of sequencing, whereas the constant groups had no experience with switching between

positions trial to trial. This concern is somewhat ameliorated by the fact that the testing phase

performance of the constant groups from their trained position was not significantly worse than

their level of performance at the end of the training phase, suggesting that they were not harmed

by random ordering of positions during testing. It should also be noted that the computerized

task utilized in the present work is relatively simple compared to many of the real-world tasks

utilized in prior research. It is thus conceivable that the effect of variability in more complex

tasks is distinct from the process put forward in the present work. An important challenge for

future work will be to assess the extent to which IGAS can account for generalization in relatively

complex tasks with far more degrees of freedom.

It is common for psychological process models of categorization learning to use an ap-

proach such as multidimensional scaling so as to transform the stimuli from the physical dimen-

sions used in the particular task into the psychological dimensions more reflective of the actual

human representations (Nosofsky, 1992; Shepard, 1987). Such scaling typically entails having par-

ticipants rate the similarity between individual items and using these similarity judgements to

then compute the psychological distances between stimuli, which can then be fed into a subse-

quent model. In the present investigation, there was no such way to scale the x and y velocity

components in terms of the psychological similarity, and thus our modelling does rely on the

assumption that the psychological distances between the different throwing positions are pro-

portional to absolute distances in the metric space of the task (e.g., the relative distance between

positions 400 and 500 is equivalent to that between 800 and 900). However, an advantage of
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our approach is that we are measuring similarity in terms of how participants behave (applying

a velocity to the ball), rather than the metric features of the task stimuli.

Conclusion

Our experiments demonstrate a reliable benefit of varied training in a simple projectile

launching task. Such results were accounted for by an instance-based model that assumes that

varied training results in the computation of a broader similarity-based generalization gradient.

Instance-based models augmented with this assumption may be a valuable approach towards

better understanding skill generalization and transfer.
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Project 2

Introduction

A longstanding issue across both science and instruction has been to understand how

various aspects of an educational curriculum or training program influence learning acquisition

and generalization. One such aspect, which has received a great deal of research attention, is the

variability of examples experienced during training (Raviv et al., 2022). The influence of training

variation has been studied in numerous domains, including category learning (A. L. Cohen et al.,

2001; Posner & Keele, 1968), visuomotor learning (Berniker et al., 2014; Schmidt, 1975), language

learning (Perry et al., 2010), and education (Braithwaite & Goldstone, 2015; Guo et al., 2014). The

pattern of results is complex, with numerous studies finding both beneficial (Braun et al., 2009;

Catalano & Kleiner, 1984; Roller et al., 2001), as well as null or negative effects (Brekelmans et al.,

2022; Hu & Nosofsky, 2024; Van Rossum, 1990). The present study seeks to contribute to the

large body of existing research by examining the influence of variability in visuomotor function

learning - a domain in which it has been relatively under-studied.

Function Learning and Extrapolation

The study of human function learning investigates how people learn relationships be-

tween continuous input and output values. Function learning is studied both in tasks where

individuals are exposed to a sequence of input/output pairs (DeLosh et al., 1997; McDaniel et al.,

2013), or situations where observers are presented with an incomplete scatterplot or line graph

andmake predictions about regions of the plot that don’t contain data (Ciccione &Dehaene, 2021;

Courrieu, 2012; Said & Fischer, 2021; Schulz et al., 2020).
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Carroll (1963) conducted the earliest work on function learning. Input stimuli and out-

put responses were both lines of varying length. The correct output response was related to the

length of the input line by a linear, quadratic, or random function. Participants in the linear and

quadratic performed above chance levels during extrapolation testing, with those in the linear

condition performing the best overall. Carroll argued that these results were best explained by a

ruled based model wherein learners form an abstract representation of the underlying function.

Subsequent work by Brehmer (1974),testing a wider array of functional forms, provided further

evidence for superior extrapolation in tasks with linear functions. Brehmer argued that individu-

als start out with an assumption of a linear function, but given sufficient error will progressively

test alternative hypothesis with polynomials of greater degree. Koh and Meyer (1991) employed

a visuomotor function learning task, wherein participants were trained on examples from an un-

known function relating the length of an input line to the duration of a response (time between

keystrokes). In this domain, participants performed best when the relation between line length

and response duration was determined by a power, as opposed to linear function. Koh & Meyer

developed the log-polynomial adaptive-regression model to account for their results.

The first significant challenge to the rule-based accounts of function learning was put

forth by DeLosh et al. (1997) . In their task, participants learned to associate stimulus magnitudes

with response magnitudes that were related via either linear, exponential, or quadratic function.

Participants approached ceiling performance by the end of training in each function condition,

and were able to correctly respond in interpolation testing trials. All three conditions demon-

strated some capacity for extrapolation, however participants in the linear condition tended to

underestimate the true function, while exponential and quadratic participants reliably overesti-
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mated the true function on extrapolation trials. Extrapolation and interpolation performance are

depicted in Figure 10.

The authors evaluated both of the rule-based models introduced in earlier research (with

some modifications enabling trial-by-trial learning). The polynomial hypothesis testing model

(Brehmer, 1974; Carroll, 1963) tended to mimic the true function closely in extrapolation, and

thus offered a poor account of the human data. The log-polynomial adaptive regression model

(Koh & Meyer, 1991) was able to mimic some of the systematic deviations produced by human

subjects, but also predicted overestimation in cases where underestimation occurred.

The authors also introduced two new function-learning models. The Associative Learning

Model (ALM) and the extrapolation-association model (EXAM). ALM is a two layer connectionist

model adapted from the ALCOVE model in the category learning literature (Kruschke, 1992).

ALM belongs to the general class of radial-basis function neural networks, and can be considered

a similarity-basedmodel in the sense that the nodes in the input layer of the network are activated

as a function of distance. The EXAM model retains the same similarity based activation and

associative learning mechanisms as ALM, while being augmented with a linear rule response

mechanism. When presented with novel stimuli, EXAM will retrieve the most similar input-

output examples encountered during training, and from those examples compute a local slope.

ALMwas able to provide a good account of participant training and interpolation data in all three

function conditions, however it was unable to extrapolate. EXAM, on the other hand, was able

to reproduce both the extrapolation underestimation, as well as the quadratic and exponential

overestimation patterns exhibited by the human participants. Subsequent research identified

some limitations in EXAM’s ability to account for cases where human participants learn and

extrapolate sinusoidal function Bott and Heit (2004) or to scenarios where different functions
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apply to different regions of the input space Kalish et al. (2004), though EXAM has been shown

to provide a good account of human learning and extrapolation in tasks with bi-linear, V shaped

input spaces Mcdaniel et al. (2009).

Variability and Function Learning

The influence of variability on function learning tasks has received relatively little at-

tention. The study by DeLosh et al. (1997) (described in detail above) did include a variability

manipulation (referred to as density in their paper), wherein participants were trained with ei-

ther either 8, 20, or 50 unique input-output pairs, with the total number of training trials held

constant. They found a minimal influence of variability on training performance, and no dif-

ference between groups in interpolation or extrapolation, with all three variability conditions

displaying accurate interpolation, and linearly biased extrapolation that was well accounted for

by the EXAM model.

In the domain of visuomotor learning, van Dam and Ernst (2015) employed a task which

required participants to learn a linear function between the spikiness of shape stimuli and the

correct horizontal position to make a rapid pointing response. The shapes ranged from very

spiky to completely circular at the extreme ends of the space. Participants trained with inter-

mediate shapes from a lower variation (2 shapes) or higher variation (5 shapes) condition, with

the 2 items of the lower varied condition matching the items used on the extreme ends of the

higher variation training space. Learning was significantly slower in the higher variation group.

However, the two conditions did not differ when tested with novel shapes, with both groups

producing extrapolation responses of comparable magnitudes to the most similar training item,

rather than in accordance with the true linear function. The authors accounted for both learning

and extrapolation performance with a Bayesian learning model. Similar to ALM, the Bayesian
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model assumes that generalization occurs as a Gaussian function of the distance between stimuli.

However unlike ALM, the Bayesian learning model utilizes more elaborate probabilistic stimulus

representations, with a separate Kalman Filter for each shape stimulus.
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Figure 10: Generalization reproduced patterns from DeLosh et al. (1997) Figure 3. Stimulii that
fall within the dashed lines are interpolations of the training examples.

Overview Of Present Study

The present study investigates the influence of training variability on learning, general-

ization, and extrapolation in a uni-dimensional visuomotor function learning task. To the best

of our knowledge, this research is the first to employ the classic constant vs. varied training

manipulation, commonly used in the literature on the benefits of variability, in the context of a

uni-dimensional function learning task. Across three experiments, we compare constant and var-

ied training conditions in terms of learning performance, extrapolation accuracy, and the ability

to reliably discriminate between stimuli.

To account for the empirical results, we will apply a series of computational models,

including the Associative Learning Model (ALM) and the Extrapolation-Association Model

(EXAM). Notably, this study is the first to employ approximate Bayesian computation (ABC) to

fit these models to individual subject data, enabling us to thoroughly investigate the full range
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of posterior predictions of each model, and to examine the ability of these influential models of

function learning to account for both the group level and individual level data.

Experiment 1

Methods

Participants A total of 156 participants were recruited from the Indiana University Intro-

ductory Psychology Course. Participants were randomly assigned to one of two training condi-

tions: varied training or constant training.

Task. The “Hit The Wall” (HTW) visuomotor extrapolation task task was programmed in

Javascript, making heavy use of the phaser.io game library. The HTW task involved launching a

projectile such that it would strike the “wall” at target speed indicated at the top of the screen (see

Figure 11). The target velocities were given as a range, or band, of acceptable velocity values (e.g.,

band 800-1000). During the training stage, participants received feedback indicating whether

they had hit the wall within the target velocity band, or how many units their throw was above

or below from the target band. Participants were instructed that only the x velocity component

of the ball was relevant to the task. The y velocity, or the location at which the ball struck the

wall, had no influence on the task feedback.

Procedure. All participants completed the task online. Participants were provided with

a description of the experiment and indicated informed consent. Figure 12 illustrates the gen-

eral procedure. Participants completed a total of 90 trials during the training stage. In the var-

ied training condition, participants encountered three velocity bands (800-1000, 1000-1200, and

1200-1400). Participants in the constant training condition trained on only one velocity band

(800-1000) - the closest band to what would be the novel extrapolation bands in the testing stage.

https://phaser.io/
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Figure 11: The Hit the wall task. Participants launch the blue ball to hit the red wall at the target
velocity band indicated at the top of the screen. The ball must be released from within the orange
square - but the location of release, and the location at which the ball strikes the wall are both
irrelevant to the task feedback.

Following the training stage, participants proceeded immediately to the testing stage. Par-

ticipants were tested from all six velocity bands, in two separate stages. In the novel extrapolation

testing stage, participants completed “no-feedback” testing from three novel extrapolation bands

(100-300, 350-550, and 600-800), with each band consisting of 15 trials. Participants were also

tested from the three velocity bands that were trained by the varied condition (800-1000, 1000-

1200, and 1200-1400). In the constant training condition, two of these bands were novel, while

in the varied training condition, all three bands were encountered during training. The order

in which participants completed the novel-extrapolation and testing-from-3-varied bands was

counterbalanced across participants. A final training stage presented participants with “feed-

back” testing for each of the three extrapolation bands (100-300, 350-550, and 600-800).
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Figure 12: Experiment 1 Design. Constant and Varied participants complete different training
conditions.

Analyses Strategy

All data processing and statistical analyses were performed in R version 4.32 (Team, 2020).

To assess differences between groups, we used Bayesian Mixed Effects Regression. Model fitting

was performed with the brms package in R (Bürkner, 2017), and descriptive stats and tables were

extracted with the BayestestR package (Makowski et al., 2019). Mixed effects regression enables

us to take advantage of partial pooling, simultaneously estimating parameters at the individual

and group level. Our use of Bayesian, rather than frequentist methods allows us to directly quan-

tify the uncertainty in our parameter estimates, as well as avoiding convergence issues common

to the frequentist analogues of our mixed models.

Each model was set to run with 4 chains, 5000 iterations per chain, with the first 2500

discarded as warmup chains. Rhat values were within an acceptable range, with values <=1.02

(see appendix for diagnostic plots). We used uninformative priors for the fixed effects of the

model (condition and velocity band), and weakly informative Student T distributions for for the

random effects. For each model, we report 1) the mean values of the posterior distribution for
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the parameters of interest, 2) the lower and upper credible intervals (CrI), and the probability of

direction value (pd).

Table 5: Statistical Model Specifications. The specifications for the Bayesian regression models
used in the analyses of each of the 3 experiments. Comparisons of accuracy use abosulte deviation
as the dependent variable, while comparisons of discrimination use the raw velocities produced
by participants as the dependent variable.

Group Comparison Code Data

End of Training

Accuracy

brm(Abs. Deviation ~ condit) Final Training

Block

Test Accuracy brm(Abs. Deviation ~ condit * bandType +

(1|id) + (1|bandInt)

All Testing trials

Band Discrimination brm(vx ~ condit * band +(1 + bandInt|id) All Testing Trials

In each experiment we compare varied and constant conditions in terms of 1) accuracy in

the final training block; 2) testing accuracy as a function of band type (trained vs. extrapolation

bands); 3) extent of discrimination between all six testing bands. We quantified accuracy as the

absolute deviation between the response velocity and the nearest boundary of the target band.

Thus, when the target band was velocity 600-800, throws of 400, 650, and 900 would result in

deviation values of 200, 0, and 100, respectively. The degree of discrimination between bands

was index by fitting a linear model predicting the response velocity as a function of the target

velocity. Participants who reliably discriminated between velocity bands tended to haves slope
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values ~1, while participants who made throws irrespective of the current target band would have

slopes ~0.

Results
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Figure 13: Experiment 1 Training Stage. Deviations from target band across training blocks.
Lower values represent greater accuracy.

Table 6: Experiment 1 - End of training performance. Comparing final training block accuracy
in band common to both groups. The Intercept represents the average of the baseline condition
(constant training), and the conditVaried coefficient reflects the difference between the constant
and varied groups. A larger positive estimates indicates a greater deviation (lower accuracy) for
the varied group. CrI values indicate 95% credible intervals. pd is the probability of direction (the
% of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 106.34 95.46 117.25 1

conditVaried 79.64 57.92 101.63 1
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Training. Figure 13 displays the average deviations across training blocks for the varied

group, which trained on three velocity bands, and the constant group, which trained on one ve-

locity band. To compare the training conditions at the end of training, we analyzed performance

on the 800-1000 velocity band, which both groups trained on. The full model results are shown

in Table 1. The varied group had a significantly greater deviation than the constant group in the

final training block, (𝛽 = 79.64, 95% CrI [57.92, 101.63]; pd = 100%).

Table 7: Experiment 1 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation bands), and the interaction between the two factors. The Intercept represents the
baseline condition (constant training & trained bands). Larger coefficients indicate larger devi-
ations from the baselines - and a positive interaction coefficient indicates disproporionate de-
viation for the varied condition on the extrapolation bands. CrI values indicate 95% credible
intervals. pd is the probability of direction (the % of the posterior on the same side of 0 as the
coefficient estimate).

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 152.55 70.63 229.85 1.0

conditVaried 39.00 -21.10 100.81 0.9

bandTypeExtrapolation 71.51 33.24 109.60 1.0

conditVaried:bandTypeExtrapolation 66.46 32.76 99.36 1.0

Testing. To compare accuracy between groups in the testing stage, we fit a Bayesianmixed

effects model predicting deviation from the target band as a function of training condition (varied

vs. constant) and band type (trained vs. extrapolation), with random intercepts for participants

and bands. The model results are shown in Table 7. The main effect of training condition was
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not significant (𝛽 = 39, 95% CrI [-21.1, 100.81]; pd = 89.93%). The extrapolation testing items

had a significantly greater deviation than the training bands (𝛽 = 71.51, 95% CrI [33.24, 109.6];

pd = 99.99%). Most importantly, the interaction between training condition and band type was

significant (𝛽 = 66.46, 95% CrI [32.76, 99.36]; pd = 99.99%), As shown in Figure 14, the varied group

had disproportionately larger deviations compared to the constant group in the extrapolation

bands.
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Figure 14: Experiment 1 Testing Accuracy. A) Empricial Deviations from target band during test-
ing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent
95% credible intervals.
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Table 8: Experiment 1 Testing Discrimination. Bayesian Mixed Model Predicting velocity as a
function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the Band
term reflect a larger slope, or greater sensitivity/discrimination. The interaction between condit
and Band indicates the difference between constant and varied slopes. CrI values indicate 95%
credible intervals. pd is the probability of direction (the % of the posterior on the same side of 0
as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 408.55 327.00 490.61 1.00

conditVaried 164.05 45.50 278.85 1.00

Band 0.71 0.62 0.80 1.00

condit*Band -0.14 -0.26 -0.01 0.98

Finally, to assess the ability of both conditions to discriminate between velocity bands, we

fit a model predicting velocity as a function of training condition and velocity band, with random

intercepts and random slopes for each participant. See Table 8 for the full model results. The

estimated coefficient for training condition (𝛽 = 164.05, 95%CrI [45.5, 278.85], pd = 99.61%) suggests

that the varied group tends to produce harder throws than the constant group, though is not in

and of itself useful for assessing discrimination. Most relevant to the issue of discrimination is the

coefficient on the Band predictor (𝛽 = 0.71 95% CrI [0.62, 0.8], pd = 100%). Although the median

slope does fall underneath the ideal of value of 1, the fact that the 95% credible interval does

not contain 0 provides strong evidence that participants exhibited some discrimination between

bands. The significant negative estimate for the interaction between slope and condition (𝛽 =

-0.14, 95% CrI [-0.26, -0.01], pd = 98.39%), suggests that the discrimination was modulated by
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training condition, with the varied participants showing less sensitivity between bands than the

constant condition (see Figure 15 and Figure 16).
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Figure 15: Experiment 1. Empirical distribution of velocities producing in testing stage. Translu-
cent bands with dashed lines indicate the correct range for each velocity band.

Experiment 1 Summary

In Experiment 1, we investigated how variability in training influenced participants’ abil-

ity learn and extrapolate in a visuomotor task. Our findings that training with variable conditions

resulted in lower final training performance are consistent with much of the prior research on the

influence of training variability (Raviv et al., 2022; Soderstrom & Bjork, 2015), and is particularly

unsurprising in the present work, given that the constant group received three times the amount

of training on the velocity band common to the two conditions.
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Figure 16: Experiment 1 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well partic-
ipants discriminated between velocity bands. B) The distribution of slope coefficients for each
condition. Larger slopes indicates better discrimination. C) Individual participant slopes. Error
bars represent 95% HDI.
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More importantly, the varied training group exhibited significantly larger deviations from

the target velocity bands during the testing phase, particularly for the extrapolation bands that

were not encountered by either condition during training.

Experiment 2

Methods & Procedure

The task and procedure of Experiment 2 was identical to Experiment 1, with the exception

that the training and testing bands were reversed (see Figure 17). The Varied group trained on

bands 100-300, 350-550, 600-800, and the constant group trained on band 600-800. Both groups

were tested from all six bands. A total of 110 participants completed the experiment (Varied: 55,

Constant: 55).

Figure 17: Experiment 2 Design. Constant and Varied participants complete different training
conditions. The training and testing bands are the reverse of Experiment 1.

Results
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Figure 18: Experiment 2 Training Stage. Deviations from target band across training blocks.
Lower values represent greater accuracy.

Table 9: Experiment 2 - End of training performance. The Intercept represents the average of
the baseline condition (constant training), and the conditVaried coefficient reflects the difference
between the constant and varied groups. A larger positive coefficient indicates a greater devia-
tion (lower accuracy) for the varied group. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 91.01 80.67 101.26 1

conditVaried 36.15 16.35 55.67 1

Training. Figure 18 presents the deviations across training blocks for both constant and

varied training groups. We again compared training performance on the band common to both

groups (600-800). The full model results are shown in Table 1. The varied group had a significantly
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greater deviation than the constant group in the final training block, ( 𝛽 = 36.15, 95% CrI [16.35,

55.67]; pd = 99.95%).

Table 10: Experiment 2 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation), and the interaction between the two factors. The Intercept represents the baseline
condition (constant training & trained bands). Larger coefficients indicate larger deviations from
the baselines - and a positive interaction coefficient indicates disproporionate deviation for the
varied condition on the extrapolation bands. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 190.91 125.03 259.31 1.00

conditVaried -20.58 -72.94 33.08 0.78

bandTypeExtrapolation 38.09 -6.94 83.63 0.95

conditVaried:bandTypeExtrapolation 82.00 41.89 121.31 1.00

Testing Accuracy. The analysis of testing accuracy examined deviations from the target

band as influenced by training condition (Varied vs. Constant) and band type (training vs. extrap-

olation bands). The results, summarized in Table 10, reveal no significant main effect of training

condition (𝛽 = -20.58, 95% CrI [-72.94, 33.08]; pd = 77.81%). However, the interaction between

training condition and band type was significant (𝛽 = 82, 95% CrI [41.89, 121.31]; pd = 100%), with

the varied group showing disproportionately larger deviations compared to the constant group

on the extrapolation bands (see Figure 19).
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Figure 19: Experiment 2 Testing Accuracy. A) Empricial Deviations from target band during test-
ing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent
95% credible intervals.
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Table 11: Experiment 2 Testing Discrimination. Bayesian Mixed Model Predicting velocity as a
function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the Band
term reflect a larger slope, or greater sensitivity/discrimination. The interaction between condit
and Band indicates the difference between constant and varied slopes. CrI values indicate 95%
credible intervals. pd is the probability of direction (the % of the posterior on the same side of 0
as the coefficient estimate)

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 362.64 274.85 450.02 1.00

conditVaried -8.56 -133.97 113.98 0.55

Band 0.71 0.58 0.84 1.00

condit*Band -0.06 -0.24 0.13 0.73

Testing Discrimination. Finally, to assess the ability of both conditions to discriminate be-

tween velocity bands, we fit a model predicting velocity as a function of training condition and

velocity band, with random intercepts and random slopes for each participant. The full model

results are shown in Table 11. The overall slope on target velocity band predictor was signifi-

cantly positive, (𝛽 = 0.71, 95% CrI [0.58, 0.84]; pd= 100%), indicating that participants exhibited

discrimination between bands. The interaction between slope and condition was not significant,

(𝛽 = -0.06, 95% CrI [-0.24, 0.13]; pd= 72.67%), suggesting that the two conditions did not differ in

their ability to discriminate between bands (see Figure 20 and Figure 21).

Experiment 2 Summary

Experiment 2 extended the findings of Experiment 1 by examining the effects of train-

ing variability on extrapolation performance in a visuomotor function learning task, but with

reversed training and testing bands. Similar to Experiment 1, the Varied group exhibited poorer
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Figure 20: Experiment 2. Empirical distribution of velocities produced in the testing stage.
Translucent bands with dash lines indicate the correct range for each velocity band.
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Figure 21: Experiment 2 Discrimination. A) Conditional effect of training condition and Band.
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performance during training and testing. However unlike experiment 1, the Varied group did not

show a significant difference in discrimination between bands.

Experiment 3

Methods & Procedure

The major adjustment of Experiment 3 is for participants to receive ordinal feedback dur-

ing training, in contrast to the continuous feedback of the prior experiments. After each training

throw, participants are informed whether a throw was too soft, too hard, or correct (i.e. within

the target velocity range). All other aspects of the task and design are identical to Experiments 1

and 2. We utilized the order of training and testing bands from both of the prior experiments, thus

assigning participants to both an order condition (Original or Reverse) and a training condition

(Constant or Varied). Participants were once again recruited from the online Indiana University

Introductory Psychology Course pool. Following exclusions, 195 participants were included in the

final analysis, n=51 in the Constant-Original condition, n=59 in the Constant-Reverse condition,

n=39 in the Varied-Original condition, and n=46 in the Varied-Reverse condition.

Results

Table 12: Experiment 3 - End of training performance. The Intercept represents the average
of the baseline condition (constant training & original band order), the conditVaried coefficient
reflects the difference between the constant and varied groups, and the bandOrderReverse co-
efficient reflects the difference between original and reverse order. A larger positive coefficient
indicates a greater deviation (lower accuracy) for the varied group. The negative value for the
interaction between condit and bandOrder indicates that varied condition with reverse order had
significantly lower deviations than the varied condition with the original band order

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 121.86 109.24 134.60 1.00
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Term Estimate 95% CrI Lower 95% CrI Upper pd

conditVaried 64.93 36.99 90.80 1.00

bandOrderReverse 1.11 -16.02 18.16 0.55

conditVaried:bandOrderReverse -77.02 -114.16 -39.61 1.00

Training. Figure 22 displays the average deviations from the target band across training

blocks, and Table 12 shows the results of the Bayesian regression model predicting the deviation

from the common band at the end of training (600-800 for reversed order, and 800-1000 for

original order conditions). The main effect of training condition is significant, with the varied

condition showing larger deviations ( 𝛽 = 64.93, 95% CrI [36.99, 90.8]; pd = 100%). The main

effect of band order is not significant 𝛽 = 1.11, 95% CrI [-16.02, 18.16]; pd = 55.4%, however the

interaction between training condition and band order is significant, with the varied condition

showing greater accuracy in the reverse order condition ( 𝛽 = -77.02, 95% CrI [-114.16, -39.61]; pd

= 100%).

Table 13: Experiment 3 testing accuracy. Main effects of condition and band type (training vs. ex-
trapolation), and the interaction between the two factors. The Intercept represents the baseline
condition, (constant training, trained bands & original order), and the remaining coefficients re-
flect the deviation from that baseline. Positive coefficients thus represent worse performance
relative to the baseline, - and a positive interaction coefficient indicates disproportionate devia-
tion for the varied condition or reverse order condition.

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 288.65 199.45 374.07 1.00

conditVaried -40.19 -104.68 23.13 0.89
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Term Estimate

95% CrI

Lower

95% CrI

Upper pd

bandTypeExtrapolation -23.35 -57.28 10.35 0.92

bandOrderReverse -73.72 -136.69 -11.07 0.99

conditVaried:bandTypeExtrapolation 52.66 14.16 90.23 1.00

conditVaried:bandOrderReverse -37.48 -123.28 49.37 0.80

bandTypeExtrapolation:bandOrderReverse 80.69 30.01 130.93 1.00

conditVaried:bandTypeExtrapolation:bandOrder 30.42 -21.00 81.65 0.87

Testing Accuracy. Table 13 presents the results of the Bayesian mixed efects model pre-

dicting absolute deviation from the target band during the testing stage. There was no significant

main effect of training condition,𝛽 = -40.19, 95% CrI [-104.68, 23.13]; pd = 89.31%, or band type,𝛽

= -23.35, 95% CrI [-57.28, 10.35]; pd = 91.52%. However the effect of band order was significant,

with the reverse order condition showing lower deviations, 𝛽 = -73.72, 95% CrI [-136.69, -11.07];

pd = 98.89%. The interaction between training condition and band type was also significant 𝛽

= 52.66, 95% CrI [14.16, 90.23]; pd = 99.59%, with the varied condition showing disproprionately

large deviations on the extrapolation bands compared to the constant group. There was also a

significant interaction between band type and band order, 𝛽 = 80.69, 95% CrI [30.01, 130.93]; pd

= 99.89%, such that the reverse order condition showed larger deviations on the extrapolation

bands. No other interactions were significant.
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Figure 22: Experiment 3 training. Deviations from target band during training. Shown separately
for groups trained with the orginal order (used in E1) and reverse order (used in E2).

Table 14: Experiment 3 testing discrimination. Bayesian Mixed Model Predicting Vx as a func-
tion of condition (Constant vs. Varied) and Velocity Band. The Intercept represents the baseline
condition (constant training & original order), and the Band coefficient represents the slope for
the baseline condition. The interaction terms which include condit and Band (e.g., conditVar-
ied:Band & conditVaried:bandOrderReverse:band) respectively indicate the how the slopes of the
varied-original condition differed from the baseline condition, and how varied-reverse condition
differed from the varied-original condition

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 601.83 504.75 699.42 1.00

conditVaried 12.18 -134.94 162.78 0.56

bandOrderReverse 13.03 -123.89 144.67 0.58

Band 0.49 0.36 0.62 1.00

conditVaried:bandOrderReverse -338.15 -541.44 -132.58 1.00

conditVaried:Band -0.04 -0.23 0.15 0.67
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Term Estimate 95% CrI Lower 95% CrI Upper pd

bandOrderReverse:band -0.10 -0.27 0.08 0.86

conditVaried:bandOrderReverse:band 0.42 0.17 0.70 1.00

Testing Discrimination. The full results of the discrimination model are presented in Ta-

ble 13. For the purposes of assessing group differences in discrimination, only the coefficients

including the band variable are of interest. The baseline effect of band represents the slope cof-

ficient for the constant training - original order condition, this effect was significant 𝛽 = 0.49,

95% CrI [0.36, 0.62]; pd = 100%. Neither of the two way interactions reached significance, 𝛽 =

-0.04, 95% CrI [-0.23, 0.15]; pd = 66.63%, 𝛽 = -0.1, 95% CrI [-0.27, 0.08]; pd = 86.35%. However, the

three way interaction between training condition, band order, and target band was significant, 𝛽

= 0.42, 95% CrI [0.17, 0.7]; pd = 99.96% - indicating a greater slope for the varied condition trained

with reverse order bands. This interaction is shown in Figure 24, where the steepness of the best

fitting line for the varied-reversed condition is noticably steeper than the other conditions.
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Figure 23: Experiment 3 Testing Accuracy. A) Empricial Deviations from target band during test-
ing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Shown separately
for groups trained with the orginal order (used in E1) and reverse order (used in E2). Error bars
represent 95% credible intervals.
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Experiment 3 Summary

In Experiment 3, we investigated the effects of training condition (constant vs. varied)

and band type (training vs. extrapolation) on participants’ accuracy and discrimination during

the testing phase. Unlike the previous experiments, participants received ordinal feedback dur-

ing the training phase. Additionally, Experiment 3 included both the original order condition

from Experiment 1 and the reverse order condition from Experiment 2. The results revealed no

significant main effects of training condition on testing accuracy, nor was there a significant dif-

ference between groups in band discrimination. However, we observed a significant three-way

interaction for the discrimination analysis, indicating that the varied condition showed a steeper

slope coefficient on the reverse order bands compared to the constant condition. This result sug-

gests that varied training enhanced participants’ ability to discriminate between velocity bands,

but only when the band order was reversed during testing.

Computational Model

Themodeling goal is to implement a full process model capable of both 1) producing novel

responses and 2) modeling behavior in both the learning and testing stages of the experiment.

For this purpose, we will apply the associative learning model (ALM) and the EXAM model of

function learning (DeLosh et al., 1997). ALM is a simple connectionist learning model which

closely resembles Kruschke’s ALCOVE model (Kruschke, 1992), with modifications to allow for

the generation of continuous responses.

ALM & Exam

ALM is a localist neural network model (Page, 2000), with each input node corresponding

to a particular stimulus, and each output node corresponding to a particular response value. The
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Figure 25: Experiment 3 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well partic-
ipants discriminated between velocity bands. B) The distribution of slope coefficients for each
condition. Larger slopes indicates better discrimination. C) Individual participant slopes. Error
bars represent 95% HDI.
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Figure 26: The Associative Learning Model (ALM). The diagram illustrates the basic structure of
the ALM model as used in the present work. Input nodes are activated as a function of their
similarity to the lower-boundary of the target band. The generalization parameter, 𝑐, determines
the degree towhich nearby input nodes are activated. The output nodes are activated as a function
of the weighted sum of the input nodes - weights are updated via the delta rule.

units in the input layer activate as a function of their Gaussian similarity to the input stimulus (

a_i(X) = exp(-c(X - X_i)^2) ). So, for example, an input stimulus of value 55 would induce maximal

activation of the input unit tuned to 55. Depending on the value of the generalization parameter,

the nearby units (e.g., 54 and 56; 53 and 57) may also activate to some degree. The units in the

input layer activate as a function of their similarity to a presented stimulus. The input layer is

fully connected to the output layer, and the activation for any particular output node is simply

the weighted sum of the connection weights between that node and the input activations. The

network then produces a response by taking the weighted average of the output units (recall

that each output unit has a value corresponding to a particular response). During training, the

network receives feedback which activates each output unit as a function of its distance from

the ideal level of activation necessary to produce the correct response. The connection weights
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between input and output units are then updated via the standard delta learning rule, where the

magnitude of weight changes are controlled by a learning rate parameter.

The EXAM model is an extension of ALM, with the same learning rule and representa-

tional scheme for input and output units. EXAM differs from ALM only in its response rule, as

it includes a linear extrapolation mechanism for generating novel responses. When a novel test

stimulus, 𝑋 , is presented, EXAM first identifies the two nearest training stimuli, 𝑋1 and 𝑋2, that

bracket 𝑋 . This is done based on the Gaussian activation of input nodes, similar to ALM, but

focuses on identifying the closest known points for extrapolation.

Slope Calculation: EXAM calculates a local slope, 𝑆, using the responses associated with

𝑋1 and 𝑋2. This is computed as:

𝑆 = 𝑚(𝑋1) − 𝑚(𝑋2)
𝑋1 − 𝑋2

where 𝑚(𝑋1) and 𝑚(𝑋2) are the output values from ALM corresponding to the 𝑋1 and 𝑋2

inputs.

Response Generation: The response for the novel stimulus 𝑋 is then extrapolated using

the slope 𝑆:

𝐸[𝑌 |𝑋] = 𝑚(𝑋1) + 𝑆 ⋅ |𝑋 − 𝑋1|

Here, 𝑚(𝑋1) is the ALM response value from the training data for the stimulus closest

to 𝑋 , and (𝑋 − 𝑋1) represents the distance between the novel stimulus and the nearest training

stimulus.
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Although this extrapolation rule departs from a strictly similarity-based generalization

mechanism, EXAM is distinct from pure rule-based models in that it remains constrained by the

weights learned during training. EXAM retrieves the two nearest training inputs, and the ALM

responses associated with those inputs, and computes the slope between these two points. The

slope is then used to extrapolate the response to the novel test stimulus. Because EXAM requires

at least two input-output pairs to generate a response, additional assumptions were required in

order for it to generate resposnes for the constant group. We assumed that participants come

to the task with prior knowledge of the origin point (0,0), which can serve as a reference point

necessary for the model to generate responses for the constant group. This assumption is moti-

vated by previous function learning research (Brown & Lacroix, 2017), which through a series of

manipulations of the y intercept of the underlying function, found that participants consistently

demonstrated knowledge of, or a bias towards, the origin point (see Kwantes and Neal (2006) for

additional evidence of such a bias in function learning tasks).

See Table 15 for a full specification of the equations that define ALM and EXAM, and

Figure 26 for a visual representation of the ALM model.

Model Fitting

To fit ALM and EXAM to our participant data, we employ a similar method to Mcdaniel et

al. (2009), wherein we examine the performance of each model after being fit to various subsets

of the data. Each model was fit to the data with three separate procedures: 1) fit to maximize

predictions of the testing data, 2) fit to maximize predictions of both the training and testing data,

3) fit to maximize predictions of the just the training data. We refer to this fitting manipulations

as “Fit Method” in the tables and figures below. It should be emphasized that for all three fit

methods, the ALM and EXAM models behave identically - with weights updating only during



THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL
MODELING APPROACH 102

Table 15: ALM & EXAM Equations

ALM Response Generation

Input Activation 𝑎𝑖(𝑋) = 𝑒−𝑐(𝑋−𝑋𝑖)2

∑𝑀
𝑘=1 𝑒−𝑐(𝑋−𝑋𝑘)2

Input nodes activate as a
function of Gaussian similarity
to stimulus

Output Activation 𝑂𝑗(𝑋) = ∑𝑀
𝑘=1 𝑤𝑗𝑖 ⋅ 𝑎𝑖(𝑋) Output unit 𝑂𝑗 activation is the

weighted sum of input
activations and association
weights

Output Probability 𝑃[𝑌𝑗 |𝑋 ] = 𝑂𝑗(𝑋)
∑𝑀

𝑘=1 𝑂𝑘(𝑋) The response, 𝑌𝑗 probabilites
computed via Luce’s choice
rule

Mean Output 𝑚(𝑋) = ∑𝐿
𝑗=1 𝑌𝑗 ⋅ 𝑂𝑗(𝑥)

∑𝑀
𝑘=1 𝑂𝑘(𝑋) Weighted average of

probabilities determines
response to X

ALM Learning
Feedback 𝑓𝑗(𝑍) = 𝑒−𝑐(𝑍−𝑌𝑗)2 feedback signal Z computed as

similarity between ideal
response and observed
response

magnitude of error Δ𝑗𝑖 = (𝑓𝑗(𝑍) − 𝑜𝑗(𝑋))𝑎𝑖(𝑋) Delta rule to update weights.
Update Weights 𝑤𝑛𝑒𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂Δ𝑗𝑖 Updates scaled by learning rate

parameter 𝜂.
EXAM Extrapolation

Instance Retrieval 𝑃[𝑋𝑖|𝑋 ] = 𝑎𝑖(𝑋)
∑𝑀

𝑘=1 𝑎𝑘(𝑋) Novel test stimulus 𝑋 activates
input nodes 𝑋𝑖

Slope Computation 𝑆 = 𝑚(𝑋1)−𝑚(𝑋2)
𝑋1−𝑋2

Slope value, 𝑆 computed from
nearest training instances

Response 𝐸[𝑌 |𝑋𝑖] = 𝑚(𝑋𝑖) + 𝑆 ⋅ [𝑋 − 𝑋𝑖] Final EXAM response is the
ALM response for the nearest
training stimulus, 𝑚(𝑋𝑖),
adjusted by local slope 𝑆.
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the training phase. Models were fit separately to the data of each individual participant. The free

parameters for bothmodels are the generalization (𝑐) and learning rate (𝑙𝑟 ) parameters. Parameter

estimation was performed using approximate bayesian computation (ABC), which we describe

in detail below.

Approximate Bayesian Computation

To estimate the parameters of ALM and EXAM, we used approximate bayesian computation

(ABC), enabling us to obtain an estimate of the posterior distribution of the generalization

and learning rate parameters for each individual. ABC belongs to the class of simulation-

based inference methods (Cranmer et al., 2020), which have begun being used for parameter

estimation in cognitive modeling relatively recently (Kangasrääsiö et al., 2019; Turner & Van

Zandt, 2012; Turner et al., 2016). Although they can be applied to any model from which

data can be simulated, ABCmethods aremost useful for complexmodels that lack an explicit

likelihood function (e.g., many neural network models).

The general ABC procedure is to 1) define a prior distribution over model parameters. 2)

sample candidate parameter values, 𝜃∗, from the prior. 3) Use 𝜃∗ to generate a simulated

dataset, 𝐷𝑎𝑡𝑎𝑠𝑖𝑚. 4) Compute a measure of discrepancy between the simulated and observed

datasets, 𝑑𝑖𝑠𝑐𝑟𝑒𝑝(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠). 5) Accept 𝜃∗ if the discrepancy is less than the tolerance

threshold, 𝜖, otherwise reject 𝜃∗. 6) Repeat until desired number of posterior samples are

obtained.

Although simple in the abstract, implementations of ABC require researchers to make a

number of non-trivial decisions as to i) the discrepancy function between observed and sim-

ulated data, ii) whether to compute the discrepancy between trial level data, or a summary
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statistic of the datasets, iii) the value of the minimum tolerance 𝜖 between simulated and

observed data. For the present work, we follow the guidelines from previously published

ABC tutorials (Farrell & Lewandowsky, 2018; Turner & Van Zandt, 2012). For the test stage,

we summarized datasets with mean velocity of each band in the observed dataset as 𝑉 (𝑘)
𝑜𝑏𝑠

and in the simulated dataset as 𝑉 (𝑘)
𝑠𝑖𝑚 , where 𝑘 represents each of the six velocity bands. For

computing the discrepancy between datasets in the training stage, we aggregated training

trials into three equally sized blocks (separately for each velocity band in the case of the var-

ied group). After obtaining the summary statistics of the simulated and observed datasets,

the discrepancy was computed as the mean of the absolute difference between simulated

and observed datasets (Equation 1 and Equation 2). For the models fit to both training and

testing data, discrepancies were computed for both stages, and then averaged together.

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑒𝑠𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
6

6
∑
𝑘=1

|𝑉 (𝑘)
𝑜𝑏𝑠 − 𝑉 (𝑘)

𝑠𝑖𝑚 | (1)

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

|𝑉 (𝑗)
𝑜𝑏𝑠,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑉 (𝑗)

𝑠𝑖𝑚,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 |

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑣𝑎𝑟 𝑖𝑒𝑑(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠 × 3

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

3
∑
𝑘=1

|𝑉 (𝑗,𝑘)
𝑜𝑏𝑠,𝑣𝑎𝑟 𝑖𝑒𝑑 − 𝑉 (𝑗,𝑘)

𝑠𝑖𝑚,𝑣𝑎𝑟 𝑖𝑒𝑑 |

(2)

The final component of our ABC implementation is the determination of an appropriate

value of 𝜖. The setting of 𝜖 exerts strong influence on the approximated posterior distribu-
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tion. Smaller values of 𝜖 increase the rejection rate, and improve the fidelity of the approx-

imated posterior, while larger values result in an ABC sampler that simply reproduces the

prior distribution. Because the individual participants in our dataset differed substantially

in terms of the noisiness of their data, we employed an adaptive tolerance setting strategy

to tailor 𝜖 to each individual. The initial value of 𝜖 was set to the overall standard devi-

ation of each individuals velocity values. Thus, sampled parameter values that generated

simulated data within a standard deviation of the observed data were accepted, while worse

performing parameters were rejected. After every 300 samples the tolerance was allowed

to increase only if the current acceptance rate of the algorithm was less than 1%. In such

cases, the tolerance was shifted towards the average discrepancy of the 5 best samples ob-

tained thus far. To ensure the acceptance rate did not become overly permissive, 𝜖 was also

allowed to decrease every time a sample was accepted into the posterior.

For each of the 156 participants from Experiment 1, the ABC algorithm was run until 200

samples of parameters were accepted into the posterior distribution. Obtaining this number of

posterior samples required an average of 205,000 simulation runs per participant. Fitting each

combination of participant, Model (EXAM & ALM), and fitting method (Test only, Train only,

Test & Train) required a total of 192 million simulation runs. To facilitate these intensive compu-

tational demands, we used the Future Package in R (Bengtsson, 2021), allowing us to parallelize

computations across a cluster of ten M1 iMacs, each with 8 cores.

Modelling Results
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Table 16: Models errors predicting empirical data from Experiment 1 - aggregated over the full
posterior distribution for each participant. Note that Fit Method refers to the subset of the data
that the model was trained on, while Task Stage refers to the subset of the data that the model
was evaluated on.

ALM EXAM

Task Stage Fit Method Constant Varied Constant Varied

Test Fit to Test Data 199.93 103.36 104.01 85.68

Test Fit to Test & Training Data 216.97 170.28 127.94 144.86

Test Fit to Training Data 467.73 291.38 273.30 297.91

Train Fit to Test Data 297.82 2, 016.01 53.90 184.00

Train Fit to Test & Training Data 57.40 132.32 42.92 127.90

Train Fit to Training Data 51.77 103.48 51.43 107.03

The posterior distributions of the 𝑐 and 𝑙𝑟 parameters are shown Figure 27, and model

predictions are shown alongside the empirical data in Figure 29. Therewere substantial individual

differences in the posteriors of both parameters, with the within-group individual differences

generally swamped any between-group or between-model differences. The magnitude of these

individual differences remains even if we consider only the single best parameter set for each

subject.

We used the posterior distribution of 𝑐 and 𝑙𝑟 parameters to generate a posterior predictive

distribution of the observed data for each participant, which then allows us to compare the empir-

ical data to the full range of predictions from each model. Aggregated residuals are displayed in

Figure 28. The pattern of training stage residual errors are unsurprising across the combinations

of models and fitting method . Differences in training performance between ALM and EXAM
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Figure 27: Posterior Distributions of 𝑐 and 𝑙𝑟 parameters. Points represent median values, thicker
intervals represent 66% credible intervals and thin intervals represent 95% credible intervals
around the median. Note that the y-axes of the plots for the c parameter are scaled logarith-
mically.
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Figure 28: Model residuals for each combination of training condition, fit method, and model.
Residuals reflect the difference between observed and predicted values. Lower values indicate
better model fit. Note that y-axes are scaled differently between facets. A) Residuals predicting
each block of the training data. B) Residuals predicting each band during the testing stage. Bolded
bars indicate bands that were trained, non-bold bars indicate extrapolation bands.
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are generally minor (the two models have identical learning mechanisms). The differences in the

magnitude of residuals across the three fitting methods are also straightforward, with massive

errors for the ‘fit to Test Only’ model, and the smallest errors for the ‘fit to train only’ models.

It is also noteworthy that the residual errors are generally larger for the first block of training,

which is likely due to the initial values of the ALM weights being unconstrained by whatever

initial biases participants tend to bring to the task. Future work may explore the ability of the

models to capture more fine grained aspects of the learning trajectories. However for the present

purposes, our primary interest is in the ability of ALM and EXAM to account for the testing pat-

terns while being constrained, or not constrained, by the training data. All subsequent analyses

and discussion will thus focus on the testing stage.

The residuals of the model predictions for the testing stage (Figure 28) also show an un-

surprising pattern across fitting methods - with models fit only to the test data showing the best

performance, followed by models fit to both training and test data, and with models fit only to

the training data showing the worst performance (note that y axes are scaled different between

plots). Although EXAM tends to perform better for both Constant and Varied participants (see

also Figure 30), the relative advantage of EXAM is generally larger for the Constant group - a

pattern consistent across all three fitting methods. The primary predictive difference between

ALM and EXAM is made clear in Figure 29, which directly compares the observed data against

the posterior predictive distributions for both models. Regardless of how the models are fit, only

EXAM can capture the pattern where participants are able to discriminate all 6 target bands.

To quantitatively assess whether the differences in performance between models, we fit a

Bayesian regression predicting the errors of the posterior predictions of eachmodels as a function

of the Model (ALM vs. EXAM) and training condition (Constant vs. Varied).
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Figure 29: Empirical data and Model predictions for mean velocity across target bands. Fitting
methods (Test Only, Test & Train, Train Only) - are separated across rows, and Training Condition
(Constant vs. Varied) are separated by columns. Each facet contains the predictions of ALM and
EXAM, alongside the observed data.
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Figure 30: A-C) Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Var-
ied). Lower values on the y axis indicate better model fit. D) Specific contrasts of model perfor-
mance comparing 1) EXAM fits between constant and varied training; 2) ALM vs. EXAM for the
varied group; 3) ALM fits between constant and varied. Negative error differences indicate that
the term on the left side (e.g., EXAM Constant) tended to have smaller model residuals.
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Model errors were significantly lower for EXAM (𝛽 = -37.54, 95% CrI [-60.4, -14.17], pd =

99.85%) than ALM. There was also a significant interaction between Model and Condition (𝛽 =

60.42, 95% CrI [36.17, 83.85], pd = 100%), indicating that the advantage of EXAM over ALM was

significantly greater for the constant group. To assess whether EXAM predicts constant perfor-

mance significantly better for Constant than for Varied subjects, we calculated the difference in

model error between the Constant and Varied conditions specifically for EXAM. The results indi-

cated that the model error for EXAMwas significantly lower in the Constant condition compared

to the Varied condition, with a mean difference of -22.88 (95% CrI [-46.02, -0.97], pd = 0.98).

Table 17: Models errors predicting empirical data - aggregated over all participants, posterior
parameter values, and velocity bands. Note that Fit Method refers to the subset of the data that
the model was trained on, while Task Stage refers to the subset of the data that the model was
evaluated on.

E2 E3

ALM EXAM ALM EXAM

Task Stage Constant Varied Constant Varied Constant Varied Constant Varied

Fit to Test Data

Test 239.7 129.8 99.7 88.2 170.1 106.1 92.3 72.8

Train 53.1 527.1 108.1 169.3 70.9 543.5 157.8 212.7

Fit to Test & Training Data

Test 266.0 208.2 125.1 126.4 197.7 189.5 130.0 128.5

Train 40.0 35.4 30.4 23.6 49.1 85.6 49.2 78.4

Fit to Training Data
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Figure 31: Empirical data and Model predictions from Experiment 2 and 3 for the testing stage.
Observed data is shown on the right. Bolded bars indicate bands that were trained, non-bold bars
indicate extrapolation bands.
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Table 18: Results of Bayesian Regression models predicting model error as a function of Model
(ALM vs. EXAM), Condition (Constant vs. Varied), and the interaction between Model and Con-
dition. The values represent the estimate coefficient for each term, with 95% credible intervals in
brackets. The intercept reflects the baseline of ALM and Constant. The other estimates indicate
deviations from the baseline for the EXAM mode and varied condition. Lower values indicate
better model fit.

Credible Interval

Experiment Term Estimate 95% CrI Lower 95% CrI Upper pd

Experiment 1

Exp 1 Intercept 176.3 156.9 194.6 1.00

Exp 1 ModelEXAM −88.4 −104.5 −71.8 1.00

Exp 1 conditVaried −37.5 −60.4 −14.2 1.00

Exp 1 ModelEXAM:conditVaried 60.4 36.2 83.8 1.00

Experiment 2

Exp 2 Intercept 245.9 226.2 264.5 1.00

Exp 2 ModelEXAM −137.7 −160.2 −115.5 1.00

Exp 2 conditVaried −86.4 −113.5 −59.3 1.00

Exp 2 ModelEXAM:conditVaried 56.9 25.3 88.0 1.00

Experiment 3

Exp 3 Intercept 164.8 140.1 189.4 1.00

Exp 3 ModelEXAM −65.7 −86.0 −46.0 1.00

Exp 3 conditVaried −40.6 −75.9 −3.0 0.98

Exp 3 bandOrderReverse 25.5 −9.3 58.7 0.93

Exp 3 ModelEXAM:conditVaried 41.9 11.2 72.5 0.99

Exp 3 ModelEXAM:bandOrderReverse −7.3 −34.5 21.1 0.70

Exp 3 conditVaried:bandOrderReverse 30.8 −19.6 83.6 0.88

Exp 3 ModelEXAM:conditVaried:bandOrderReverse −60.6 −101.8 −18.7 1.00

Model Fits to Experiment 2 and 3. Data from Experiments 2 and 3 were fit to ALM and

EXAM in the same manner as Experiment1 . For brevity, we only plot and discuss the results

of the “fit to training and testing data” models - results from the other fitting methods can be
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found in the appendix. The model fitting results for Experiments 2 and 3 closely mirrored those

observed in Experiment 1. The Bayesian regression models predicting model error as a function

of Model (ALM vs. EXAM), Condition (Constant vs. Varied), and their interaction (see Table 18)

revealed a consistent main effect of Model across all three experiments. The negative coefficients

for the ModelEXAM term (Exp 2: 𝛽 = -86.39, 95% CrI -113.52, -59.31, pd = 100%; Exp 3: 𝛽 = -40.61,

95% CrI -75.9, -3.02, pd = 98.17%) indicate that EXAM outperformed ALM in both experiments.

Furthermore, the interaction between Model and Condition was significant in both Experiment

2 (𝛽 = 56.87, 95% CrI 25.26, 88.04, pd = 99.98%) and Experiment 3 (𝛽 = 41.9, 95% CrI 11.2, 72.54,

pd = 99.35%), suggesting that the superiority of EXAM over ALM was more pronounced for the

Constant group compared to the Varied group, as was the case in Experiment 1. Recall that Ex-

periment 3 included participants in both the original and reverse order conditions - and that this

manipulation interacted with the effect of training condition. We thus also controlled for band

order in our Bayesian Regression assessing the relative performance of EXAM and ALM in Ex-

periment 3. There was a significant three way interaction between Model, Training Condition,

and Band Order (𝛽 = -60.6, 95% CrI -101.8, -18.66, pd = 99.83%), indicating that the relative advan-

tage of EXAM over ALM was only more pronounced in the original order condition, and not the

reverse order condition (see Figure 32).

Computational Model Summary. Across all three experiments, the model fits consistently

favored the Extrapolation-Association Model (EXAM) over the Associative Learning Model

(ALM). This preference for EXAM was particularly pronounced for participants in the constant

training conditions (note the positive coefficients on ModelEXAM:conditVaried interaction

terms Table 18). This pattern is clearly illustrated in Figure 33, which plots the difference in

model errors between ALM and EXAM for each individual participant. Both varied and constant
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Model Error for Experiment 2 and 3 data. Experiment 3 also includes a control for the order of
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conditions have a greater proportion of subjects better fit by EXAM (positive error differences),

with the magnitude of EXAM’s advantage visibly larger for the constant group.

The superior performance of EXAM, especially for the constant training groups, may ini-

tially seem counterintuitive. Onemight assume that exposure to multiple, varied examples would

be necessary to extract an abstract rule. However, EXAM is not a conventional rule-based model;

it does not require the explicit abstraction of a rule. Instead, rule-based responses emerge during

the retrieval process. The constant groups’ formation of a single, accurate input-output associ-

ation, combined with the usefulness of the zero point, may have been sufficient for EXAM to

capture their performance. A potential concern is that the assumption of participants utilizing

the zero point essentially transforms the extrapolation problem into an interpolation problem.

However, this concern is mitigated by the consistency of the results across both the original and

reversed order conditions (the testing extrapolation bands fall in between the constant training

band and the 0 point in experiment 1, but not in experiment 2).

The fits to the individual participants also reveal a number of interesting cases where the

models struggle to capture the data (Figure 34). For example participant 68 exhibits a strong

a strong non-monotonicity in the highest velocity band, a pattern which ALM can mimic, but

which EXAM cannot capture, given it’s to enforce a simple linear relationship between target

velocity and response. Participant 70 (lower right corner of Figure 34) had a roughly parabolic

response pattern in their observed data, a pattern which neither model can properly reproduce,

but which causes EXAM to perform particularly poorly.

Modeling Limitations. The present work compared models based on their ability to predict

the observed data, without employing conventional model fit indices such as the Akaike Informa-

tion Criterion (AIC) or the Bayesian Information Criterion (BIC). These indices, which penalize
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models based on their number of free parameters, would have been of limited utility in this case,

as both ALM and EXAM have two free parameters. However, despite having the same number

of free parameters, EXAM could still be considered the more complex model, as it incorporates

all the components of ALM plus an additional mechanism for rule-based responding. A more

comprehensive model comparison approach might involve performing cross-validation with a

held-out subset of the data (Mezzadri et al., 2022) or penalizing models based on the range of

patterns they can produce (Dome & Wills, 2023).
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Project 2 Discussion

Across three experiments, we investigated the impact of training variability on learning

and extrapolation in a visuomotor function learning task.

In Experiment 1, participants in the varied training condition, who experienced a wider

range of velocity bands during training, showed lower accuracy at the end of training compared

to those in the constant training condition. Crucially, during the testing phase, the varied group

exhibited significantly larger deviations from the target velocity bands, particularly for the ex-

trapolation bands that were not encountered during training. The varied group also showed

less discrimination between velocity bands, as evidenced by shallower slopes when predicting

response velocity from target velocity band.

Experiment 2 extended these findings by reversing the order of the training and testing

bands. Similar to Experiment 1, the varied group demonstrated poorer performance during both

training and testing phases. However, unlike Experiment 1, the varied group did not show a

significant difference in discrimination between bands compared to the constant group.

In Experiment 3, we provided only ordinal feedback during training, in contrast to the

continuous feedback provided in the previous experiments. Participants were assigned to both

an order condition (original or reverse) and a training condition (constant or varied). The varied

condition showed larger deviations at the end of training, consistent with the previous exper-

iments. Interestingly, there was a significant interaction between training condition and band

order, with the varied condition showing greater accuracy in the reverse order condition. Dur-

ing testing, the varied group once again exhibited larger deviations, particularly for the extrap-

olation bands. The reverse order conditions showed smaller deviations compared to the original
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order conditions. Discrimination between velocity bands was poorer for the varied group in the

original order condition, but not in the reverse order condition.

All three of our experiments yielded evidence that varied training conditions produced

less learning by the end of training, a pattern consistent with much of the previous research on

the influence of training variability (Catalano &Kleiner, 1984; Soderstrom&Bjork, 2015; Wrisberg

et al., 1987). The sole exception to this pattern was the reverse order condition in Experiment

3, where the varied group was not significantly worse than the constant group. Neither the

varied condition trained with the same reverse-order items in Experiment 2, nor the original-

order varied condition trained with ordinal feedback in Experiment 3 were able to match the

performance of their complementary constant groups by the end of training, suggesting that

the relative success of the ordinal-reverse ordered varied group cannot be attributed to item or

feedback effects alone.

Our findings also diverge from the two previous studies to cleanly manipulate the vari-

ability of training items in a function learning task (DeLosh et al., 1997; van Dam & Ernst, 2015),

although the varied training condition of van Dam and Ernst (2015) also exhibited less learn-

ing, neither of these previous studies observed any difference between training conditions in

extrapolation to novel items. Like DeLosh et al. (1997) , our participants exhibited above chance

extrapolation/discrimination of novel items, however they observed no difference between any

of their three training conditions. A noteworthy difference difference between our studies is that

DeLosh et al. (1997) trained participants with either 8, 20, or 50 unique items (all receiving the

same total number of training trials). These larger sets of unique items, combined with the fact

that participants achieved near ceiling level performance by the end of training - may have made

it more difficult to observe any between-group differences of training variation in their study. van
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Dam and Ernst (2015) ’s variability manipulation was more similar to our own, as they trained

participants with either 2 or 5 unique items. However, although the mapping between their input

stimuli and motor responses was technically linear, the input dimension was more complex than

our own, as it was defined by the degree of “spikiness” of the input shape. This entirely arbitrary

mapping also would have preculded any sense of a “0” point, which may partially explain why

neither of their training conditions were able to extrapolate linearly in the manner observed in

the current study or in DeLosh et al. (1997).

Limitations

While the present study provides valuable insights into the influence of training variabil-

ity on visuomotor function learning and extrapolation, there are several limitations that should

be flagged. First, although the constant training group never had experience from a velocity band

closer to the extrapolation bands than the varied group, they always had a three times more trials

with the nearest velocity band. Such a difference may be an unavoidable consequence of varied

vs. constant design which match the total number of training trials between the two groups.

However in order to more carefully tease apart the influence of variability from the influence of

frequency/repetition effects, future research could explore alternative designs that maintain the

variability manipulation while equating the amount of training on the nearest examples across

conditions, such as by increasing the total number of trials for the varied group. Another limi-

tation is that the testing stage did not include any interpolation items, i.e. the participants tested

only from the training bands they experienced during training, or from extrapolation bands.

The absence of interpolation testing makes it more difficult to distinguish between the effects

of training variability on extrapolation specifically, as opposed to generalization more broadly.

Of course, the nature of the constant training condition makes interpolation testing impossible to
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implement, however future studies might compare a training regimes that each include at least

2 distinct items, but still differ in total amount of variability experienced, which would then al-

low groups to be compared in terms of both interpolation and extrapolation testing. Finally, the

task employed in the present study consisted of only a linear, positive function. Previous work

in human function learning has repeatedly shown that such functions are among the easiest to

learn, but that humans are nonetheless capable of learning negative, non-linear, or discontinuous

functions (Busemeyer et al., 1997; DeLosh et al., 1997; Kalish, 2013; Mcdaniel et al., 2009). It thus

remains an open question as to whether the influence of training variability might interact with

various components of the to-be-learned function.

General Discussion

To facilitate ease of comparison between the two projects and their respective tasks, we’ll

now refer to project 1 as Hit The Target (HTT) and project 2 as Hit The Wall (HTW).

Empirical and Modeling Summary

Across both projects, we investigated the influence of training variability on learning and

generalization in computerized visuomotor skill learning, and function learning tasks. In project 1

(HTT), experiments 1 and 2 demonstrated that varied training led to superior testing performance

compared to constant training. In Experiment 1, the varied group even outperformed the constant

group even when testing from the constant groups trained position. In contrast, Project 2 (HTW)

found the opposite pattern - the varied training groups exhibited poorer performance than the

constant groups, both in terms of training accuracy, accuracy in extrapolation testing, and, in a

subset of the experiments, the varied group showed a diminished ability to discriminate between
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bands. This detrimental effect of variability was observed across three experiments, with the

exception of the reverse order condition in Experiment 3, where the varied group was able to

match the constant group’s performance.

Both projects also included computational modeling componenents. In Project 1, the IGAS

model was introduced as a means of addressing the lack of control for similarity between training

and testing conditions common to previous work in the “benefits of variability” literature. The

IGAS model provides a theoretically motivated method of quantifying the similarity between

training experience and testing conditions. The resulting similarity metric (i.e. our 1c-similarity)

is shown to be a significant predictor of testing performance on its own, and when added as a co-

variate to the statistical model used to compare the constant and varied training groups. We then

showed the group-level effect of training variability on testing performance can be accounted

for with the additional assumption that training variability influences the generalization gradi-

ent. The contribution of the IGAS model was thus twofold: 1) providing a theoretically justifiable

method of quantifying/controlling for similarity between training and testing, and 2) demonstrat-

ing the viability of a flexible-similarity based generalization account for the empirically observed

benefit of variability in our task. Although similar approaches have been employed in other do-

mains, both contributions are novel additions to the large body of research assessing the effect

of constant vs. varied training manipulations in visuomotor skill tasks.

Although theoretically motivated, the IGAS model of Project 1 is best categorized as a

descriptive measurement-model. Sufficient to account for group differences, but lacking the ma-

chinery necessary to provide a full process-level account of how the empirical quantities of in-

terest are generated. In contrast, Project 2 (HTW) implemented a more robust computational

modeling approach, implementing and comparing full process models (ALM & EXAM), capable
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of generating predictions for both the learning and testing stages of the experiment. ALM and

EXAM have been used as models of function learning, cue judgement, and forecasting behavior

in numerous studies over the past 25 years (Brown & Lacroix, 2017; DeLosh et al., 1997; Kane

& Broomell, 2020; H. Kelley & Busemeyer, 2008; Kwantes et al., 2012; Mcdaniel et al., 2009;

Von Helversen & Rieskamp, 2010). The present work presents the first application of these mod-

els to to the study of training variability in a visuomotor function learning task. We fit both

models to individual participant data, using a form of simulation-based Bayesian parameter es-

timation that allowed us to generate and compare the full posterior predictive distributions of

each model. EXAM provided the best overall account of the testing data, and the advantage of

EXAM over ALM was significantly greater for the constant group. Notably, EXAM captured the

constant groups’ ability to extrapolate linearly to novel velocity bands, despite receiving train-

ing from only a single input-output pair. This finding suggests that EXAM’s linear extrapolation

mechanism, combined with the assumption of prior knowledge about the origin point (0, 0), was

sufficient to account for the constant groups’ accurate extrapolation performance. Such findings

may offer a preliminary suggestion that experience with a more variable set of training examples

may be detrimental to performance in simple extrapolation tasks.

Differences between the two Projects

The HTT and HTW tasks differ across numerous dimensions that may be relevant to the

opposing patterns observed in the two projects (see Table 19 provides for a detailed comparison

of the two tasks).

In HTT, the salient perceptual elements of the task (i.e. the launching box, target and

barrier) are subject to variation (i.e. different distances between the launching box and target),
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and the spatial layout of these perceptually variable elements are intrinsically linked to the task

objective of striking the target. Conversely, the perceptual task elements in HTW are invariant

across trials, and the task objective is specified by the target velocity value specified as a numeral

at the top of the screen. If the benefits of training variation do arise from the formation and

flexible retrieval of distinct memory traces, then the lack of perceptual salience between training

instances in the HTW task may have limited any potential benefits of variability. Future work

could investigate this possibility further employing a modified version of the HTW task wherein

the correct velocity value is indicated by some perceptual feature of the task (e.g., the color of the

wall, or size of the ball), rather than displaying the target velocity numerically.

The HTT and HTW tasks also differed in terms of general task complexity. The HTT task

was designed to mimic projectile launching tasks commonly employed in visuomotor learning

studies, and the parabolic trajectories necessary to strike the target in HTT were sensitive to

both the x and y dimensions of the projectiles velocity (and to a lesser extent, the position within

the launching box at which the ball was released). Conversely the HTW task was influenced to

a greater extent by the tasks commonly utilized in the function learning literature, wherein the

correct output respones are determined by a single input dimension. In HTW,the relationship

between feedback and optimal behavioral adjustment is also almost perfectly smooth, if partic-

ipants produce a throw that is 100 units too hard, they’ll be told that they were 100 units away

from the target band. Whereas in HTT, the presence of the barrier in introduces irregularities

in the task space. Even throws close to the solution space might result in failure, creating a less

predictable learning environment.
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Table 19: Comparison of the tasks in Project 1 (HTT) and Project 2 (HTW).

Dimension HTT (Project 1) HTW (Project 2)

Task

Description

Projectile launching to hit a target Projectile launching to hit wall at

a specific velocity

Task

Complexity

More complex parabolic trajectory, both x

and y velocities relevant to outcome

Simpler 1D mapping of force to

outcome. Only x velocity is

relevant.

Task Space More complex: xy velocity combinations

closer to the solution space may still result

in worse feedback due to striking the

barrier.

Simpler: smooth, linear mapping

between velocity and feedback.

Perceptual

salience of

Varied

Conditions

Varied conditions (# of throwing distances)

are perceptually distinct, i.e. salient

differences in distance between launching

box and target.

Varied conditions (# of velocity

bands) are less salient - only

difference is the numeral

displayed on screen.

Testing

Feedback

Testing always included feedback Primary testing stage had no

feedback.

Potential for

Learning

during

Testing

Limited potential for learning during

testing due to feedback.

Some potential for learning

during no-feedback testing by

observing ball trajectory.
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Dimension HTT (Project 1) HTW (Project 2)

Training

Experience

Varied group gets half as much experience

on any one position as the constant group.

Varied group gets 1/3 as much

experience on any one velocity

band as the constant group.

Testing

Structure

Random interleaving of trained/transfer

testing distances.

Blocked structure, separately

testing trained vs extrapolation

testing bands.

Conclusion

In summary, this dissertation provides a comprehensive examination of the effects of

training variability on learning and generalization in visuomotor and function learning tasks.

The contrasting results obtained from the Hit The Target (HTT) and Hit The Wall (HTW) tasks

underscore the complexity inherent to the longstanding pedagogical and scientific goal of iden-

tifying training manipulations that consistently benefit learning and generalization. Moreover,

through the development and application of computational models, we provide novel theoretical

accounts for both the beneficial and detrimental effects of training variability observed in our

experiments. These findings highlight the importance of considering task characteristics when

designing experiments intended to assess the influence of training interventions, and demon-

strate the value of combining empirical and computational modeling approaches to uncover the

cognitive mechanisms that support learning and generalization. Future research should continue

to investigate the complex interplay between task demands, training manipulations, and individ-
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ual differences, with the ultimate goal of optimizing educational and training outcomes across a

wide range of domains.

Appendix

Apppendix available at tegorman13.github.io/Dissertation/Sections/Appendix.html

Appendix/Full_Appendix.qmd
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