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Abstract

Exposing learners to variability during training has been demonstrated to improve per-

formance in subsequent transfer testing. Such variability benefits are often accounted for by

assuming that learners are developing some general task schema or structure. However much of

this research has neglected to account for differences in similarity between varied and constant

training conditions. In a between-groups manipulation, we trained participants on a simple pro-

jectile launching task, with either varied or constant conditions. We replicate previous findings

showing a transfer advantage of varied over constant training. Furthermore, we show that a

standard similarity model is insufficient to account for the benefits of variation, but, if the model

is adjusted to assume that varied learners are tuned towards a broader generalization gradient,

then a similarity-based model is sufficient to explain the observed benefits of variation. Our re-

sults therefore suggest that some variability benefits can be accommodated within instance-based

models without positing the learning of some schemata or structure.

Introduction

Similarity and instance-based approaches to transfer of learning

Notions of similarity have long played a central role in many prominent models of gener-

alization of learning, as well as in the longstanding theoretical issue of whether learners abstract

an aggregate, summary representation, or if they simply store individual instances. Early models

of learning often assumed that discrete experiences with some task or category were not stored

individually in memory, but instead promoted the formation of a summary representation, often

referred to as a prototype or schema, and that exposure to novel examples would then prompt the
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retrieval of whichever preexisting prototype was most similar (Posner & Keele, 1968). Prototype

models were later challenged by the success of instance-based or exemplar models – which were

shown to provide an account of generalization as good or better than prototype models, with the

advantage of not assuming the explicit construction of an internal prototype (Estes, 1994; Hintz-

man, 1984; Medin & Schaffer, 1978; Nosofsky, 1986). Instance-based models assume that learners

encode each experience with a task as a separate instance/exemplar/trace, and that each encoded

trace is in turn compared against novel stimuli. As the number of stored instances increases, so

does the likelihood that some previously stored instance will be retrieved to aid in the perfor-

mance of a novel task. Stored instances are retrieved in the context of novel stimuli or tasks if

they are sufficiently similar, thus suggesting that the process of computing similarity is of central

importance to generalization.

Similarity, defined in this literature as a function of psychological distance between in-

stances or categories, has provided a successful account of generalization across numerous tasks

and domains. In an influential study demonstrating an ordinal similarity effect, experimenters

employed a numerosity judgment task in which participants quickly report the number of dots

flashed on a screen. Performance (in terms of response times to new patterns) on novel dot

configurations varied as an inverse function of their similarity to previously trained dot con-

figurations Palmeri (1997). That is, performance was better on novel configurations moderately

similar to trained configurations than to configurations with low-similarity, and also better on

low-similarity configurations than to even less similar, unrelated configurations. Instance-based

approaches have had some success accounting for performance in certain sub-domains of motor

learning (Cohen & Rosenbaum, 2004; Crump & Logan, 2010; Meigh et al., 2018; Poldrack et al.,

1999; Wifall et al., 2017). Crump & Logan (2010) trained participants to type words on an unfamil-
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iar keyboard, while constraining the letters composing the training words to a pre-specified letter

set. Following training, typing speed was tested on previously experienced words composed of

previously experienced letters; novel words composed of letters from the trained letter set; and

novel words composed of letters from an untrained letter set. Consistent with an instance-based

account, transfer performance was graded such that participants were fastest at typing the words

they had previously trained on, followed by novel words composed of letters they had trained

on, and slowest performance for new words composed of untrained letters.

Issues with Previous Research

Although the benefits of training variation in visuomotor skill learning have been ob-

served many times, null findings have also been repeatedly found, leading some researchers to

question the veracity of the variability of practice hypothesis (Newell, 2003; Van Rossum, 1990).

Critics have also pointed out that investigations of the effects of training variability, of the sort

described above, often fail to control for the effect of similarity between training and testing

conditions. For training tasks in which participants have numerous degrees of freedom (e.g. pro-

jectile throwing tasks where participants control the x and y velocity of the projectile), varied

groups are likely to experience a wider range of the task space over the course of their training

(e.g. more unique combinations of x and y velocities). Experimenters may attempt to account for

this possibility by ensuring that the training location(s) of the varied and constant groups are an

equal distance away from the eventual transfer locations, such that their training throws are, on

average, equally similar to throws that would lead to good performance at the transfer locations.

However, even this level of experimental control may still be insufficient to rule out the effect of

similarity on transfer. Given that psychological similarity is typically best described as either a
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Gaussian or exponentially decaying function of psychological distance (Ennis et al., 1988; Ghahra-

mani et al., 1996; Logan, 1988; Nosofsky, 1992; Shepard, 1987; Thoroughman & Taylor, 2005), it is

plausible that a subset of the most similar training instances could have a disproportionate im-

pact on generalization to transfer conditions, even if the average distance between training and

transfer conditions is identical between groups. Figure 1 demonstrates the consequences of a gen-

eralization gradient that drops off as a Gaussian function of distance from training, as compared

to a linear drop-off.
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Figure 1: Left panel- Generalization predicted from a simple model that assumes a linear gen-
eralization function. A varied group (red vertical lines indicate the 2 training locations) trained
from positions 400 and 800, and a constant group (blue vertical line), trained from position 600.
Right panel- if a Gaussian generalization function is assumed, then varied training (400, 800) is
predicted to result in better generalization to positions close to 400 and 800 than does constant
training at 600. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In addition to largely overlooking the potential for non-linear generalization to confound

interpretations of training manipulations, the visuomotor skill learning literature also rarely con-

siders alternatives to schema representations (Chamberlin & Magill, 1992b). Although schema-
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theory remains influential within certain literatures, instance or exemplar-based models have

accounted for human behavior across myriad domains (Jamieson et al., 2022; Logan, 2002). As

mentioned above, instance based accounts have been shown to perform well on a variety of dif-

ferent tasks with motoric components (Crump & Logan, 2010; Gandolfo et al., 1996; Meigh et al.,

2018; Rosenbaum et al., 1995; van Dam & Ernst, 2015). However, such accounts have received lit-

tle attention within the subdomain of visuomotor skill learning focused on the benefits of varied

training.

The present work examines whether the commonly observed benefits of varied training

can be accounted for by a theoretrically motivated measure of the similarity between training

throws and the testing solution space. We first attempt to replicate previous work finding an ad-

vantage of varied training over constant training in a projectile launching task. We then examine

the extent to which this advantage can be explained by an instance-based similarity model.

Experiment 1

Methods

Sample Size Estimation

To obtain an independent estimate of effect size, we identified previous investigations

which included between-subjects contrasts of varied and constant conditions following training

on an accuracy based projectile launching task (Chua et al., 2019; Goodwin et al., 1998; Kerr &

Booth, 1978; Wulf, 1991). We then averaged effects across these studies, yielding a Cohen’s f =.43.

The GPower 3.1 software package (Faul et al., 2009) was then used to determine that a power of

80% requires a sample size of at least 23 participants per condition. All experiments reported in

the present manuscript exceed this minimum number of participants per condition.
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Participants

Participants were recruited from an undergraduate population that is 63% female and

consists almost entirely of individuals aged 18 to 22 years. A total of 110 Indiana University

psychology students participated in Experiment 1. We subsequently excluded 34 participants

poor performance at one of the dependent measures of the task (2.5-3 standard deviations worse

than the median subject at the task) or for displaying a pattern of responses that was clearly

indicative of a lack of engagement with the task (e.g. simply dropping the ball on each trial rather

than throwing it at the target), or for reporting that they completed the experiment on a phone

or tablet device, despite the instructions not to use one of these devices. A total of 74 participants

were retained for the final analyses, 35 in the varied group and 39 in the constant group.

Task. The experimental task was programmed in JavaScript, using packages from the

Phaser physics engine (https://phaser.io) and the jsPsych library (de Leeuw, 2015). The stimuli,

presented on a black background, consisted of a circular blue ball - controlled by the participant

via the mouse or trackpad cursor; a rectangular green target; a red rectangular barrier located

between the ball and the target; and an orange square within which the participant could control

the ball before releasing it in a throw towards the target. Because the task was administered

online, the absolute distance between stimuli could vary depending on the size of the computer

monitor being used, but the relative distance between the stimuli was held constant. Likewise,

the distance between the center of the target and the training and testing locations was scaled

such that relative distances were preserved regardless of screen size. For the sake of brevity,

subsequent mentions of this relative distance between stimuli, or the position where the ball

landed in relation to the center of the target, will be referred to simply as distance. Figure 2
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displays the layout of the task, as it would appear to a participant at the start of a trial, with the

ball appearing in the center of the orange square. Using a mouse or trackpad, participants click

down on the ball to take control of the ball, connecting the movement of the ball to the movement

of the cursor. Participants can then “wind up” the ball by dragging it (within the confines of the

orange square) and then launch the ball by releasing the cursor. If the ball does not land on

the target, participants are presented with feedback in red text at the top right of the screen,

specifying how many scaled units away the ball was from the center of the target. If the ball was

thrown outside of the boundary of the screen participants are given feedback as to how far away

from the target center the ball would have been if it had continued its trajectory. If the ball strikes

the barrier (from the side or by landing on top), feedback is presented telling participants to avoid

hitting the barrier. If participants drag the ball outside of the orange square before releasing it,

the trial terminates, and they are reminded to release the ball within the orange square. If the

ball lands on the target, feedback is presented in green text, confirming that the target was hit,

and presenting additional feedback on how many units away the ball was from the exact center

of the target.

Link to abbreviated example of task.

Procedure. Participants first electronically consented to participate, and then read in-

structions for the task which explained how to control the ball, and the goal of throwing the ball

as close to the center of the target as possible. The training phase was split into 10 blocks of

20 trials, for a total of 200 training trials. Participants in the constant condition trained exclu-

sively from a single location (760 scaled units from the target center). Participants in the varied

condition trained from two locations (610 and 910 scaled units from the target center), encoun-

https://pcl.sitehost.iu.edu/tg/demos/igas_expt1_demo.html
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Figure 2: The stimuli of the task consisted of a blue ball, which the participants would launch
at the green target, while avoiding the red barrier. On each trial, the ball would appear in the
center of the orange square, with the position of the orange square varying between experimental
conditions. Participants were constrained to release the ball within the square

tering each location 100 times. The sequence of throwing locations was pseudo-random for the

varied group, with the constraint that within every block of 20 training throws both training

locations would occur 10 times. Participants in both conditions also received intermittent test-

ing trials after every 20 training trials. Intermittent testing trials provided no feedback of any

kind. The ball would disappear from view as soon as it left the orange square, and participants

were prompted to start the next trial without receiving any information about the accuracy of

the throw. Each intermittent testing stage consisted of two trials from each of the three training

positions (i.e. all participants executed two trials each from Positions 610, 760, and 910 during

each of the 10 intermittent testing stages). Following training, all participants completed a final

testing phase from four positions: 1) their training location, 2) the training location(s) of the other

group, 3) a location novel to both groups. The testing phase consisted of 15 trials from each of

the four locations, presented in a randomized order. All trials in the final testing phase included

feedback. After finishing the final testing portion of the study, participants were queried as to

whether they completed the study using a mouse, a trackpad, or some other device (this infor-
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mation was used in the exclusion process described above). Finally, participants were debriefed

as to the hypotheses and manipulation of the study.

Results

Data Processing and Statistical Packages

To prepare the data, we removed trials that were not easily interpretable as performance

indicators in our task. Removed trials included: 1) those in which participants dragged the ball

outside of the orange starting box without releasing it, 2) trials in which participants clicked

on the ball, and then immediately released it, causing the ball to drop straight down, 3) outlier

trials in which the ball was thrown more than 2.5 standard deviations further than the average

throw (calculated separately for each throwing position), and 4) trials in which the ball struck

the barrier. The primary measure of performance used in all analyses was the absolute distance

away from the center of the target. The absolute distance was calculated on every trial, and then

averaged within each subject to yield a single performance score, for each position. A consistent

pattern across training and testing phases in both experiments was for participants to perform

worse from throwing positions further away from the target – a pattern which we refer to as the

difficulty of the positions. However, there were no interactions between throwing position and

training conditions, allowing us to collapse across positions in cases where contrasts for specific

positions were not of interest. All data processing and statistical analyses were performed in R

version 4.32 (Team, 2020). ANOVAs for group comparisons were performed using the rstatix

package (Kassambara, 2021).
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Training Phase

Figure 3 below shows aggregate training performance binned into three stages represent-

ing the beginning, middle, and end of the training phase. Because the two conditions trained

from target distances that were not equally difficult, it was not possible to directly compare per-

formance between conditions in the training phase. Our focus for the training data analysis was

instead to establish that participants did improve their performance over the course of training,

and to examinewhether therewas any interaction between training stage and condition. Descrip-

tive statistics for the intermittent testing phase are provided in the supplementary materials.

We performed an ANOVA comparison with stage as a within-group factor and condition

as between-group factor. The analysis revealed a significant effect of training stage F(2,142)=62.4,

p<.001, 𝜂2𝐺 = .17, such that performance improved over the course of training. There was no

significant effect of condition F(1,71)=1.42, p=.24, 𝜂2𝐺 = .02, and no significant interaction between

condition and training stage, F(2,142)=.10, p=.91, 𝜂2𝐺 < .01.

Testing Phase

In Experiment 1, a single constant-trained group was compared against a single varied-

trained group. At the transfer phase, all participants were tested from 3 positions: 1) the posi-

tions(s) from their own training, 2) the training position(s) of the other group, and 3) a position

novel to both groups. Overall, group performance was compared with a mixed type III ANOVA,

with condition (varied vs. constant) as a between-subject factor and throwing location as awithin-

subject variable. The effect of throwing position was strong, F(3,213) = 56.12, p<.001, η2G = .23.

The effect of training condition was significant F(1,71)=8.19, p<.01, η2G = .07. There was no sig-

nificant interaction between group and position, F(3,213)=1.81, p=.15, η2G = .01.
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Figure 3: Training performance for varied and constant participants binned into three stages.
Shorter bars indicate better performance (ball landing closer to the center of the target). Error
bars indicate standard error of the mean.
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Figure 4: Testing performance for each of the 4 testing positions, compared between training
conditions. Positions 610 and 910 were trained on by the varied group, and novel for the constant
group. Position 760was trained on by the constant group, and novel for the varied group. Position
835 was novel for both groups. Shorter bars are indicative of better performance (the ball landing
closer to the center of the target). Error bars indicate standard error of the mean.
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Table 1: Testing performance for varied and constant groups in experiment 1. Mean absolute
deviation from the center of the target, with standard deviations in parenthesis.

Position Constant Varied

610 132.48(50.85) 104.2(38.92)

760 207.26(89.19) 167.12(72.29)

835 249.13(105.92) 197.22(109.71)

910 289.36(122.48) 212.86(113.93)

Discussion

In Experiment 1, we found that varied training resulted in superior testing performance

than constant training, from both a position novel to both groups, and from the position at which

the constant group was trained, which was novel to the varied condition. The superiority of

varied training over constant training even at the constant training position is of particular note,

given that testing at this position should have been highly similar for participants in the constant

condition. It should also be noted, though, that testing at the constant trained position is not

exactly identical to training from that position, given that the context of testing is different in

several ways from that of training, such as the testing trials from the different positions being

intermixed, aswell as a simple change in context as a function of time. Such contextual differences

will be further considered in the General Discussion.
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In addition to the variation of throwing position during training, the participants in the

varied condition of Experiment 1 also received training practice from the closest/easiest position,

as well as from the furthest/most difficult position that would later be encountered by all par-

ticipants during testing. The varied condition also had the potential advantage of interpolating

both of the novel positions from which they would later be tested. Experiment 2 thus sought to

address these issues by comparing a varied condition to multiple constant conditions.

Experiment 2

In Experiment 2, we sought to replicate our findings from Experiment 1 with a new sample

of participants, while also addressing the possibility of the pattern of results in Experiment 1 being

explained by some idiosyncrasy of the particular training location of the constant group relative

to the varied group. To this end, Experiment 2 employed the same basic procedure as Experiment

1, but was designed with six separate constant groups each trained from one of six different

locations (400, 500, 625, 675, 800, or 900), and a varied group trained from two locations (500

and 800). Participants in all seven groups were then tested from each of the 6 unique positions.

Methods

Participants

A total of 306 Indiana University psychology students participated in Experiment 2, which

was also conducted online. As was the case in Experiment 1, the undergraduate population from

which we recruited participants was 63% female and primarily composed of 18–22-year-old indi-

viduals. Using the same procedure as Experiment 1, we excluded 98 participants for exceptionally

poor performance at one of the dependent measures of the task, or for displaying a pattern of
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responses indicative of a lack of engagement with the task. A total of 208 participants were in-

cluded in the final analyses with 31 in the varied group and 32, 28, 37, 25, 29, 26 participants in

the constant groups training from location 400, 500, 625, 675, 800, and 900, respectively. All

participants were compensated with course credit.

Task and Procedure

The task of Experiment 2 was identical to that of Experiment 1, in all but some minor

adjustments to the height of the barrier, and the relative distance between the barrier and the

target. Additionally, the intermittent testing trials featured in Experiment 1 were not utilized

in Experiment 2. An abbreviated demo of the task used for Experiment 2 can be found at

(https://pcl.sitehost.iu.edu/tg/demos/igas_expt2_demo.html).

The procedure for Experiment 2 was also quite similar to Experiment 1. Participants com-

pleted 140 training trials, all of which were from the same position for the constant groups and

split evenly (70 trials each - randomized) for the varied group. In the testing phase, participants

completed 30 trials from each of the six locations that had been used separately across each of the

constant groups during training. Each of the constant groups thus experienced one trained loca-

tion and five novel throwing locations in the testing phase, while the varied group experiences 2

previously trained, and 4 novel locations.

Results

Data Processing and Statistical Packages

After confirming that condition and throwing position did not have any significant inter-

actions, we standardized performance within each position, and then average across position to

yield a single performance measure per participant. This standardization did not influence our
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pattern of results. As in Experiment 1, we performed type III ANOVAs due to our unbalanced

design, however the pattern of results presented below is not altered if type 1 or type III tests are

used instead. The statistical software for the primary analyses was the same as for Experiment

1. Individual learning rates in the testing phase, compared between groups in the supplementary

analyses, were fit using the TEfit package in R (Cochrane, 2020).

Training Phase

The different training conditions trained from positions that were not equivalently diffi-

cult and are thus not easily amenable to comparison. As previously stated, the primary interest

of the training data is confirmation that some learning did occur. Figure 5 depicts the training

performance of the varied group alongside that of the aggregate of the six constant groups (5a),

and each of the 6 separate constant groups (5b). An ANOVA comparison with training stage

(beginning, middle, end) as a within-group factor and group (the varied condition vs. the 6 con-

stant conditions collapsed together) as a between-subject factor revealed no significant effect of

group on training performance, F(1,206)=.55,p=.49, 𝜂2𝐺 <.01, a significant effect of training stage

F(2,412)=77.91, p<.001, 𝜂2𝐺 =.05, and no significant interaction between group and training stage,

F(2,412)=.489 p=.61, 𝜂2𝐺 <.01. We also tested for a difference in training performance between

the varied group and the two constant groups that trained matching throwing positions (i.e., the

constant groups training from position 500, and position 800). The results of our ANOVA on

this limited dataset mirrors that of the full-group analysis, with no significant effect of group

F(1,86)=.48, p=.49, 𝜂2𝐺 <.01, a significant effect of training stage F(2,172)=56.29, p<.001, 𝜂2𝐺 =.11, and

no significant interaction between group and training stage, F(2,172)=.341 p=.71, 𝜂2𝐺 <.01.
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Figure 5: Training performance for the six constant conditions, and the varied condition, binned
into three stages. On the left side, the six constant groups are averaged together, as are the two
training positions for the varied group. On the right side, the six constant groups are shown
separately, with each set of bars representing the beginning, middle, and end of training for a
single constant group that trained from the position indicated on the x-axis. Figure 5b also shows
training performance separately for both of the throwing locations trained by the varied group.
Error bars indicate standard error of the mean.
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Testing Phase

In Experiment 2, a single varied condition (trained from two positions, 500 and 800), was

compared against six separate constant groups (trained from a single position, 400, 500, 625, 675,

800 or 900). For the testing phase, all participants were tested from all six positions, four of which

were novel for the varied condition, and five of which were novel for each of the constant groups.

For a general comparison, we took the absolute deviations for each throwing position and com-

puted standardized scores across all participants, and then averaged across throwing position.

The six constant groups were then collapsed together allowing us to make a simple compari-

son between training conditions (constant vs. varied). A type III between-subjects ANOVA was

performed, yielding a significant effect of condition F(1,206)=4.33, p=.039, 𝜂2𝐺 =.02. Descriptive

statistics for each condition are shown in table 2. In Figure 6 visualizes the consistent advantage

of the varied condition over the constant groups across the testing positions. Figure 6 shows

performance between the varied condition and the individual constant groups.

Table 2: Transfer performance from each of the 6 throwing locations from which all participants
were tested. Each bar represents performance from one of seven distinct training groups (six
constant groups in red, one varied group in blue). The x axis labels indicate the location(s) from
which each group trained. Lower values along the y axis reflect better performance at the task
(closer distance to target center). Error bars indicate standard error of the mean.

Position Constant Varied
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400 100.59(46.3) 83.92(33.76)

500 152.28(69.82) 134.38(61.38)

625 211.21(90.95) 183.51(75.92)

675 233.32(93.35) 206.32(94.64)

800 283.24(102.85) 242.65(89.73)

900 343.51(114.33) 289.62(110.07)

Next, we compared the testing performance of constant and varied groups from only

positions that participants had not encountered during training. Constant participants each had

5 novel positions, whereas varied participants tested from 4 novel positions (400,625,675,900).

We first standardized performance within in each position, and then averaged across positions.

Here again, we found a significant effect of condition (constant vs. varied): F(1,206)=4.30, p=.039,

𝜂2𝐺 = .02 .

Table 3: Testing performance from novel positions. Includes data only from positions that were
not encountered during the training stage (e.g. excludes positions 500 and 800 for the varied
group, and one of the six locations for each of the constant groups). Table presents Mean absolute
deviations from the center of the target, and standard deviations in parenthesis.

Position Constant Varied

400 98.84(45.31) 83.92(33.76)

500 152.12(69.94) NA

625 212.91(92.76) 183.51(75.92)

675 232.9(95.53) 206.32(94.64)

800 285.91(102.81) NA
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900 346.96(111.35) 289.62(110.07)

Finally, corresponding to the comparison of position 760 from Experiment 1, we compared

the test performance of the varied group against the constant group from only the positions that

the constant groups trained. Such positions were novel to the varied group (thus this analysis

omitted two constant groups that trained from positions 500 or 800 as those positions were not

novel to the varied group). Figure 7 displays the particular subset of comparisons utilized for

this analysis. Again, we standardized performance within each position before performing the

analyses on the aggregated data. In this case, the effect of condition did not reach statistical

significance F(1,149)=3.14, p=.079, 𝜂2𝐺 = .02. Table 4 provides descriptive statistics.

Table 4: Testing performance from the locations trained by constant participants and novel to
varied participants. Locations 500 and 800 are not included as these were trained by the varied
participants. Table presents Mean absolute deviation from the center of the target, and standard
deviations in parenthesis.

Position Constant Varied

400 108.85(50.63) 83.92(33.76)

625 204.75(84.66) 183.51(75.92)

675 235.75(81.15) 206.32(94.64)

900 323.5(130.9) 289.62(110.07)
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Figure 6: Testing phase performance from each of the six testing positions. The six constant con-
ditions are averaged together into a single constant group, compared against the single varied-
trained group.B) Transfer performance from each of the 6 throwing locations from which all
participants were tested. Each bar represents performance from one of seven distinct training
groups (six constant groups in red, one varied group in blue). The x axis labels indicate the loca-
tion(s) from which each group trained. Lower values along the y axis reflect better performance
at the task (closer distance to target center). Error bars indicate standard error of the mean.
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Figure 7: A comparison of throwing location that are identical to those trained by the constant
participants (e.g. constant participants trained at position 900, tested from position 900), which
are also novel to the varied-trained participants (thus excluding positions 500 and 800). Error
bars indicate standard error of the mean.

Discussion

The results of Experiment 2 largely conform to the findings of Experiment 1. Participants

in both varied and constant conditions improved at the task during the training phase. We did not

observe the common finding of training under varied conditions producing worse performance

during acquisition than training under constant conditions (Catalano & Kleiner, 1984; Wrisberg

et al., 1987), which has been suggested to relate to the subsequent benefits of varied training

in retention and generalization testing (Soderstrom & Bjork, 2015). However our finding of no

difference in training performance between constant and varied groups has been observed in

previous work (Chua et al., 2019; Moxley, 1979; Pigott & Shapiro, 1984).

In the testing phase, our varied group significantly outperformed the constant conditions

in both a general comparison, and in an analysis limited to novel throwing positions. The ob-
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served benefit of varied over constant training echoes the findings of many previous visuomotor

skill learning studies that have continued to emerge since the introduction of Schmidt’s influen-

tial Schema Theory (Catalano & Kleiner, 1984; Chua et al., 2019; Goodwin et al., 1998; McCracken

& Stelmach, 1977; Moxley, 1979; Newell & Shapiro, 1976; Pigott & Shapiro, 1984; Roller et al., 2001;

Schmidt, 1975; Willey & Liu, 2018; Wrisberg et al., 1987; Wulf, 1991). We also join a much smaller

set of research to observe this pattern in a computerized task (Seow et al., 2019). One departure

from the Experiment 1 findings concerns the pattern wherein the varied group outperformed the

constant group even from the training position of the constant group, which was significant in

Experiment 1, but did not reach significance in Experiment 2. Although this pattern has been

observed elsewhere in the literature (Goode et al., 2008; Kerr & Booth, 1978), the overall evidence

for this effect appears to be far weaker than for the more general benefit of varied training in

conditions novel to all training groups. # Computational Model

Controlling for the similarity between training and testing. The primary goal of Experiment

2 was to examine whether the benefits of variability would persist after accounting for individ-

ual differences in the similarity between trained and tested throwing locations. To this end, we

modelled each throw as a two-dimensional point in the space of x and y velocities applied to the

projectile at the moment of release. For each participant, we took each individual training throw,

and computed the similarity between that throw and the entire population of throws within the

solution space for each of the 6 testing positions. We defined the solution space empirically as

the set of all combinations of x and y throw velocities that resulted in hitting the target. We

then summed each of the trial-level similarities to produce a single similarity for each testing

position score relating how the participant threw the ball during training and the solutions that

would result in target hits from each of the six testing positions – thus resulting in six separate
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similarity scores for each participant. Figure 8 visualizes the solution space for each location and

illustrates how different combinations of x and y velocity result in successfully striking the target

from different launching positions. As illustrated in Figure 8, the solution throws represent just

a small fraction of the entire space of velocity combinations used by participants throughout the

experiment.
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Figure 8: A) A visual representation of the combinations of throw parameters (x and y velocities
applied to the ball at launch), which resulted in target hits during the testing phase. This empirical
solution space was compiled from all of the participants in experiment 2. B) shows the solution
spacewithin the context of all of the throwsmade throughout the testing phase of the experiment.
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For each individual trial, the Euclidean distance (Equation 1) was computed between the

velocity components (x and y) of that trial and the velocity components of each individual solution

throw for each of the 6 positions fromwhich participants would be tested in the final phase of the

study. The P parameter in Equation 1 is set equal to 2, reflecting a Gaussian similarity gradient.

Then, as per an instance-based model of similarity (Logan, 2002; Nosofsky, 1992), these distances

were multiplied by a sensitivity parameter, c, and then exponentiated to yield a similarity value.

The parameter c controls the rate with which similarity-based generalization drops off as the

Euclidean distance between two throws in x- and y-velocity space increases. If c has a large

value, then even a small difference between two throws’ velocities greatly decreases the extent

of generalization from one to the other. A small value for c produces broad generalization from

one throw to another despite relatively large differences in their velocities. The similarity values

for each training individual throw made by a given participant were then summed to yield a final

similarity score, with a separate score computed for each of the 6 testing positions. The final

similarity score is construable as index of how accurate the throws a participant made during the

training phase would be for each of the testing positions.

Equation 1:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑡𝑦𝐼 ,𝐽 = ∑
𝑖=𝐼

∑
𝑗=𝐽

(𝑒−𝑐 ⋅𝑑𝑝𝑖,𝑗 )

Equation 2:

𝑑𝑖,𝑗 = √(𝑥𝑇 𝑟𝑎𝑖𝑛𝑖 − 𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗 )2 + (𝑦𝑇 𝑟𝑎𝑖𝑛𝑖 − 𝑦𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗 )2
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A simple linear regression revealed that these similarity scores were significantly pre-

dictive of performance in the transfer stage, t =-15.88, p<.01, 𝑟2=.17, such that greater similarity

between training throws and solution spaces for each of the test locations resulted in better per-

formance. We then repeated the group comparisons above while including similarity as a co-

variate in the model. Comparing the varied and constant groups in testing performance from all

testing positions yielded a significant effect of similarity, F(1, 205)=85.66, p<.001, 𝜂2𝐺 =.29, and also

a significant effect of condition (varied vs. constant), F(1, 205)=6.03, p=.015, 𝜂2𝐺 =.03. The group

comparison limited to only novel locations for the varied group pit against trained location for the

constant group resulted in a significant effect of similarity, F(1,148)=31.12, p<.001, 𝜂2𝐺 =.18 as well

as for condition F(1,148)=11.55, p<.001, 𝜂2𝐺 =.07. For all comparisons, the pattern of results was

consistent with the initial findings from Experiment 2, with the varied group still performing

significantly better than the constant group.

Fitting model parameters separately by group

To directly control for similarity in Experiment 2, we developed a model-based measure

of the similarity between training throws and testing conditions. This similarity measure was a

significant predictor of testing performance, e.g., participants whose training throws were more

similar to throws that resulted in target hits from the testing positions, tended to perform better

during the testing phase. Importantly, the similarity measure did not explain away the group-

level benefits of varied training, which remained significant in our linear model predicting testing

performance after similarity was added to the model. However, previous research has suggested

that participants may differ in their level of generalization as a function of prior experience, and

that such differences in generalization gradients can be captured by fitting the generalization pa-
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rameter of an instance-based model separately to each group (Hahn et al., 2005; Lamberts, 1994).

Relatedly, the influential Bayesian generalization model developed by Tenenbaum & Griffiths

(2001) predicts that the breadth of generalization will increase when a rational agent encounters

awider variety of examples. Following these leads, we assume that in addition to learning the task

itself, participants are also adjusting how generalizable their experience should be. Varied versus

constant participants may be expected to learn to generalize their experience to different degrees.

To accommodate this difference, the generalization parameter of the instance-based model (in the

present case, the 𝑐 parameter) can be allowed to vary between the two groups to reflect the ten-

dency of learners to adaptively tune the extent of their generalization. One specific hypothesis is

that people adaptively set a value of c to fit the variability of their training experience (Nosofsky

& Johansen, 2000; Sakamoto et al., 2006). If one’s training experience is relatively variable, as

with the variable training condition, then one might infer that future test situations will also be

variable, in which case a low value of c will allow better generalization because generalization

will drop off slowly with training-to-testing distance. Conversely, if one’s training experience

has little variability, as found in the constant training conditions, then one might adopt a high

value of c so that generalization falls off rapidly away from the trained positions.

To address this possibility, we compared the original instance-based model of similarity

fit against a modified model which separately fits the generalization parameter, c, to varied and

constant participants. To perform this parameter fitting, we used the optim function in R, and

fit the model to find the c value(s) that maximized the correlation between similarity and testing

performance.

Both models generate distinct similarity values between training and testing locations.

Much like the analyses in Experiment 2, these similarity values are regressed against testing
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performance inmodels of the form shown below. Aswas the case previously, testing performance

is defined as the mean absolute distance from the center of the target (with a separate score for

each participant, from each position).

Linear models 1 and 3 both show that similarity is a significant predictor of testing perfor-

mance (p<.01). Of greater interest is the difference between linear model 2, in which similarity

is computed from a single c value fit from all participants (Similarity1c), with linear model 4,

which fits the 𝑐 parameter separately between groups (Similarity2c). In linear model 2, the effect

of training group remains significant when controlling for Similarity1c (p<.01), with the varied

group still performing significantly better. However, in linear model 4 the addition of the Similar-

ity2c predictor results in the effect of training group becoming nonsignificant (p=.40), suggesting

that the effect of varied vs. constant training is accounted for by the Similarity2c predictor. Next,

to further establish a difference between the models, we performed nested model comparisons

using ANOVA, to see if the addition of the training group parameter led to a significant improve-

ment in model performance. In the first comparison, ANOVA(Linear Model 1, Linear Model 2),

the addition of the training group predictor significantly improved the performance of the model

(F=22.07, p<.01). However, in the second model comparison, ANOVA (Linear model 3, Linear

Model 4) found no improvement in model performance with the addition of the training group

predictor (F=1.61, p=.20).

Finally, we sought to confirm that similarity values generated from the adjusted Similar-

ity2cmodel hadmore predictive power than those generated from the original Similarity1c model.

Using the BIC function in R, we compared BIC values between linear model 1 (BIC=14604.00) and

linear model 3 (BIC = 14587.64). The lower BIC value of model 3 suggests a modest advantage for

predicting performance using a similarity measure computed with two c values over similarity
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computed with a single c value. When fit with separate c values, the best fitting 𝑐 parameters

for the model consistently optimized such that the c value for the varied group (c=.00008) was

smaller in magnitude than the c value for the constant group(c= .00011). Recall that similarity

decreases as a Gaussian function of distance (equation 1 above), and a smaller value of c will re-

sult in a more gradual drop-off in similarity as the distance between training throws and testing

solutions increases.

In summary, our modeling suggests that an instance-based model which assumes equiv-

alent generalization gradients between constant and varied trained participants is unable to ac-

count for the extent of benefits of varied over constant training observed at testing. The evidence

for this in the comparative model fits is that when a varied/constant dummy-coded variable for

condition is explicitly added to the model, the variable adds a significant contribution to the pre-

diction of test performance, with the variable condition yielding better performance than the con-

stant conditions. However, if the instance-based generalization model is modified to assume that

the training groups can differ in the steepness of their generalization gradient, by incorporating a

separate generalization parameter for each group, then the instance-based model can account for

our experimental results without explicitly taking training group into account. Henceforth this

model will be referred to as the Instance-based Generalization with Adaptive Similarity (IGAS)

model.

General Discussion

Across two experiments, we found evidence in support of the benefits of variability hy-

pothesis in a simple, computerized projectile throwing task. Generalization was observed in

both constant and varied participants, in that both groups tended to perform better at novel po-
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sitions in the testing phase than did participants who started with those positions in the training

phase. However, varied trained participants consistently performed better than constant trained

participants, in terms of both the testing phase in general, and in a comparison that only in-

cluded untrained positions. We also found some evidence for the less commonly observed pattern

wherein varied-trained participants outperform constant-trained participants even from condi-

tions identical to the constant group training (Goode et al., 2008; Green et al., 1995; Kerr & Booth,

1978). In Experiment 1 varied participants performed significantly better on this identity com-

parison. In Experiment 2, the comparison was not significant initially, but became significant

after controlling for the similarity measure that incorporates only a single value for the steep-

ness of similarity-based generalization (c). Furthermore, we showed that the general pattern of

results from Experiment 2 could be parsimoniously accommodated by an instance-based similar-

ity model, but only with the assumption that constant and varied participants generalize their

training experience to different degrees.

Our results thus suggest that the benefits of variation cannot be explained by the varied-

trained participants simply covering a broader range of the task space. Rather, the modeling

suggests that varied participants also learn to adaptively tune their generalization function such

that throwing locations generalize more broadly to one another than they do in the constant con-

dition. A learning system could end up adopting a higher c value in the constant than variable

training conditions by monitoring the trial-by-trial variability of the training items. The 𝑐 pa-

rameter would be adapted downwards when adjacent training items are dissimilar to each other

and adapted upwards when adjacent training items are the same. In this fashion, contextually

appropriate c values could be empirically learned. This learning procedure would capture the

insight that if a situation has a high amount variability, then the learner should be predisposed
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toward thinking that subsequent test items will also show considerable variability, in which case

generalization gradients should be broad, as is achieved by low values for c. Sakamoto et al.

(2006) implemented a similar learning mechanism for updating the generalization paramater in

an exemplar-based model (although in their model, a separate generalization parameter is as-

signed to each exemplar). In their experiment, participants were trained on a high variability

and a low variability category, and the dynamically updated generalization parameter was nec-

essary to account for broader generalization observed around the high variability category when

participants were tested with an ambiguous intermediary item. In a subsequent work (Sakamoto

et al., 2008), the same authors showed that a similar learning mechanism could account for the

pattern wherein participants generalize more broadly around a category when the average dis-

tance between the category exemplars is larger (however the only model tested in this work was

a prototype model).

Also of interest is whether the IGAS model can predict the pattern of results wherein

the varied condition outperforms the constant condition even from the position on which the

constant condition trained. Although our models were fit using all of the Experiment 2 training

and testing data, not just that of the identity comparisons, in Figure 9 we demonstrate how a

simplified version of the IGAS model could in principle produce such a pattern. In addition to the

assumption of differential generalization between varied and constant conditions, our simplified

model makes explicit an assumption that is incorporated into the full IGAS model – namely that

even when being tested from a position identical to that which was trained, there are always

some psychological contextual differences between training and testing throws, resulting in a

non-zero dissimilarity.
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Figure 9: A simple model depicting the necessity of both of two separately fit generalization
parameters, c, and a positive distance between training and testing contexts, in order for an
instance model to predict a pattern of varied training from stimuli 400 and 800 outperforming
constant training from position 600 at a test position of 600. For the top left panel, in which the
generalizationmodel assumes a single c value (-.008) for both varied and constant conditions, and
identical contexts across training and testing, the equation which generates the varied condition
is - Amount of Generalization = 𝑒(𝑐⋅|𝑥−800|)+𝑒(𝑐⋅|𝑥−400|), whereas the constant group generalization
is generated from 2 ⋅ 𝑒(𝑐⋅|𝑥−600|). For the top right panel, the c constants in the original equations
are different for the 2 conditions, with 𝑐 = −.002 for the varied condition, and 𝑐 = −.008 for
the constant condition. The bottom two panels are generated from identical equations to those
immediately above, except for the addition of extra distance (100 units) to reflect the assumption
of some change in context between training and testing conditions. Thus, the generalization
model for the varied condition in the bottom-right panel is of the form - Amount of Generalization
= 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−800|) + 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−400|) .
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As described above, the idea that learners flexibly adjust their generalization gradient

based on prior experience does have precedent in the domains of category learning (Aha & Gold-

stone, 1992; Briscoe & Feldman, 2011; Hahn et al., 2005; Lamberts, 1994; Op de Beeck et al., 2008),

and sensorimotor adaptation (Marongelli & Thoroughman, 2013; Taylor & Ivry, 2013; Thorough-

man & Taylor, 2005). Lamberts (1994) showed that a simple manipulation of background knowl-

edge during a categorization test resulted in participants generalizing their training experience

more or less broadly, and moreover that such a pattern could be captured by allowing the gener-

alization parameter of an instance-based similarity model to be fit separately between conditions.

The flexible generalization parameter has also successfully accounted for generalization behavior

in cases where participants have been trained on categories that differ in their relative variability

(Hahn et al., 2005; Sakamoto et al., 2006). However, to the best of our knowledge, IGAS is the

first instance-based similarity model that has been put forward to account for the effect of varied

training in a visuomotor skill task. Although IGAS was inspired by work in the domain of cat-

egory learning, its success in a distinct domain may not be surprising in light of the numerous

prior observations that at least certain aspects of learning and generalization may operate un-

der common principles across different tasks and domains (Censor et al., 2012; Hills et al., 2010;

Jamieson et al., 2022; Law & Gold, 2010; Roark et al., 2021; Rosenbaum et al., 2001; Vigo et al.,

2018; Wall et al., 2021; Wu et al., 2020; Yang et al., 2020).

Our modelling approach does differ from category learning implementations of instance-

based models in several ways. One such difference is the nature of the training instances that

are assumed to be stored. In category learning studies, instances are represented as points in a

multidimensional space of all of the attributes that define a category item (e.g. size/color/shape).

Rather than defining instances in terms of what stimuli learners experience, our approach as-



IGAS PROJECT 35

sumes that stored, motor instances reflect how they act, in terms of the velocity applied to the

ball on each throw. An advantage of many motor learning tasks is the relative ease with which

task execution variables can be directly measured (e.g. movement force, velocity, angle, posture)

in addition to the decision and response time measures that typically exhaust the data generated

frommore classical cognitive tasks. Of course, whether learners actually are storing each individ-

ual motor instance is a fundamental question beyond the scope of the current work – though as

described in the introduction there is some evidence in support of this idea (Chamberlin &Magill,

1992a; Crump & Logan, 2010; Hommel, 1998; Meigh et al., 2018; Poldrack et al., 1999). A particu-

larly noteworthy instance-based model of sensory-motor behavior is the Knowledge II model of

Rosenbaum and colleagues (Cohen & Rosenbaum, 2004; Rosenbaum et al., 1995). Knowledge II

explicitly defines instances as postures (joint combinations), and is thus far more detailed than

IGAS in regards to the contents of stored instances. Knowledge II also differs from IGAS in that

learning is accounted for by both the retrieval of stored postures, and the generation of novel pos-

tures via the modification of retrieved postures. A promising avenue for future research would

be to combine the adaptive similarity mechanism of IGAS with the novel instance generation

mechanisms of Knowledge II.

Our findings also have some conceptual overlap with an earlier study on the effects of

varied training in a coincident timing task (Catalano & Kleiner, 1984). In this task, participants

observe a series of lamps lighting up consecutively, and attempt to time a button press with the

onset of the final lamp. The design consisted of four separate constant groups, each training from

a single lighting velocity, and a single varied group training with all four of the lighting velocities

used by the individual constant groups. Participantswere then split into four separate testing con-

ditions, each of which were tested from a single novel lighting velocity of varying distance from
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the training conditions. The result of primary interest was that all participants performed worse

as the distance between training and testing velocity increased – a typical generalization decre-

ment. However, varied participants showed less of a decrement than did constant participants.

The authors take this result as evidence that varied training results in a less-steep generalization

gradient than does constant training. Although the experimental conclusions of Catalano and

Kleiner are similar to our own, our work is novel in that we account for our results with a cog-

nitive model, and without assuming the formation of a schema. Additionally, the way in which

Catalano and Kleiner collapse their separate constant groups together may result in similarity

confounds between varied and constant conditions that leaves their study open to methodolog-

ical criticisms, especially in light of related work which demonstrated that the extent to which

varied training may be beneficial can depend on whether the constant group they are compared

against trained from similar conditions to those later tested (Wrisberg et al., 1987). Our study

alleviates such concerns by explicitly controlling for similarity.

Limitations

A limitation of this study concerns the ordering of the testing/transfer trials at the conclu-

sion of both experiments. Participants were tested from each separate position (4 in Experiment

1, 6 in Experiment 2) in a random, intermixed order. Because the varied group was trained from

two positions that were also randomly ordered, they may have benefited from experience with

this type of sequencing, whereas the constant groups had no experience with switching between

positions trial to trial. This concern is somewhat ameliorated by the fact that the testing phase

performance of the constant groups from their trained position was not significantly worse than

their level of performance at the end of the training phase, suggesting that they were not harmed
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by random ordering of positions during testing. It should also be noted that the computerized

task utilized in the present work is relatively simple compared to many of the real-world tasks

utilized in prior research. It is thus conceivable that the effect of variability in more complex

tasks is distinct from the process put forward in the present work. An important challenge for

future work will be to assess the extent to which IGAS can account for generalization in relatively

complex tasks with far more degrees of freedom.

It is common for psychological process models of categorization learning to use an ap-

proach such as multidimensional scaling so as to transform the stimuli from the physical dimen-

sions used in the particular task into the psychological dimensions more reflective of the actual

human representations (Nosofsky, 1992; Shepard, 1987). Such scaling typically entails having par-

ticipants rate the similarity between individual items and using these similarity judgements to

then compute the psychological distances between stimuli, which can then be fed into a subse-

quent model. In the present investigation, there was no such way to scale the x and y velocity

components in terms of the psychological similarity, and thus our modelling does rely on the

assumption that the psychological distances between the different throwing positions are pro-

portional to absolute distances in the metric space of the task (e.g. the relative distance between

positions 400 and 500 is equivalent to that between 800 and 900). However, an advantage of

our approach is that we are measuring similarity in terms of how participants behave (applying

a velocity to the ball), rather than the metric features of the task stimuli.

Conclusion

Our experiments add to the longstanding body of research investigating the effect of train-

ing variability on learning and generalization. Both experiments demonstrate a reliable benefit
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of varied training over constant training in a projectile launching task. We also introduce the

Instance-based Generalization with Adaptive Similarity (IGAS) as a novel explanation for the ef-

fect of variability on generalization. The key assumption made by IGAS is that the amount of

variation encountered during training influences the steepness of the generalization gradient.

Instance-based models augmented with this assumption may be a valuable approach towards

better understanding skill generalization and transfer.

Appendix
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First vs. second half of testing stage
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Group Comparison for asymptote-starting performance
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Relative distance and under/overshooting

Reviewer 3 Absolute versus relative distance: From a methodological standpoint, I un-

derstand the need to differentiate these two types of distance. However, from a theoretical per-

spective there may be some issue in differentiating these two concepts. Schema theory relies on

relative (or invariant) information to inform the motor program. However, both distances would

be important to an instance or exemplar representation. You may want to consider commenting

on this issue.

Reviewer 2 For the same reason, the plots showing improvement during training could be

due to participants learning the task, rather than fine motor skills. Although task learning and

motor learning are impossible to separate cleanly, the common practice in the field is indeed to

offer practice trials to reduce the task learning aspects. The authors should address this.
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In addition to absolute errors (which is related to variance), the authors should also pro-

vide other measures of performance, e.g., the mean of the signed errors, so that readers have a

better idea whether there was any meaningful over- or undershooting.

experiment 1 training - relative distances.
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Overshoot Undershoot
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=========================================================================

conditType devianceDirection 610 760 910

-------------------------------------------------------------------------

constant Overshoot 311.84(307.92)
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constant Undershoot 188.05(163.62)

varied Overshoot 211.69(234.97) 360.14(322.01)

varied Undershoot 107.35(81.21) 244.85(196.47)

-------------------------------------------------------------------------

======================================================

conditType 610 760 910

------------------------------------------------------

constant 121.03(269.17)

varied 39.91(178.12) 150.53(290.04)

------------------------------------------------------

====================================================================

conditType 610 760 835 910

--------------------------------------------------------------------

constant 7.13(124.02) 107.02(218.49) 142.42(252.34) 122.92(282.58)

varied 3.19(96.67) 92.1(173.9) 103.84(214.4) 108.12(234.59)

--------------------------------------------------------------------
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experiment 2 training - relative distances.
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Experiment 1 Testing - relative distances.
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====================================================================================================================================

conditType2 msdu_610 msdu_760 msdu_835 msdu_910 msds_610 msds_760 msds_835 msds_910

------------------------------------------------------------------------------------------------------------------------------------

Constant Training 136.27(84.29) 191.65(112.65) 219.46(139.91) 276.75(153.09) 25.28(158.98) 50.82(217.48) 73.14(250.93) 50.76(313.77)

Varied Training 105.12(51.39) 149.37(93.4) 180.54(129.52) 198.64(137.84) 13.85(116.87) 50.59(169.59) 50.52(217.39) 49.94(237.71)

------------------------------------------------------------------------------------------------------------------------------------

=========================================================================

Condition 610 760 835 910
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-------------------------------------------------------------------------

Constant Training 25.28(158.98) 50.82(217.48) 73.14(250.93) 50.76(313.77)

Varied Training 13.85(116.87) 50.59(169.59) 50.52(217.39) 49.94(237.71)

-------------------------------------------------------------------------

Experiment 2 Testing - relative distances.
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Experimenet 1 - intermittent testing.
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======================================================================================================

Condition 610_First Half 760_First Half 910_First Half 610_Second Half 760_Second Half 910_Second Half

------------------------------------------------------------------------------------------------------

constant 206.64(82.08) 286.51(121.07) 406.93(145.2) 187.2(55.24) 238.21(95.16) 313.27(114.86)

varied 195.68(78.58) 278.9(105.37) 318.53(134.81) 177.79(70.82) 224.98(108.04) 276.86(110.5)

------------------------------------------------------------------------------------------------------
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Training plots - Experiment 1
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fit to testing performance averaged across positions.
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ANOVA Table (type III tests)

Effect DFn DFd F p p<.05 ges
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