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4 Testing performance for each of the 4 testing positions, compared between training
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5 Training performance for the six constant conditions, and the varied condition,

binned into three stages. On the left side, the six constant groups are averaged
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conditions are averaged together into a single constant group, compared against the
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group in blue). The x axis labels indicate the location(s) from which each group
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distance to target center). Error bars indicate standard error of the mean. . . . . . 27
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participants (e.g., constant participants trained at position 900, tested from position
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12 Experiment 1 Design. Constant and Varied participants complete different training

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

13 Experiment 1 Training Stage. Deviations from target band across training blocks.

Lower values represent greater accuracy. . . . . . . . . . . . . . . . . . . . . . . . . 49
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15 Experiment 1. Empirical distribution of velocities producing in testing stage.
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Individual participant slopes. Error bars represent 95% HDI. . . . . . . . . . . . . 53
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Introduction

Varied Training and Generalization

Varied training has been shown to influence learning in a wide array of different tasks and do-

mains, including categorization (Hahn et al., 2005; Maddox & Filoteo, 2011; Morgenstern et al.,

2019; Nosofsky et al., 2019; Plebanek & James, 2021; Posner & Keele, 1968), language learning

(Brekelmans et al., 2022; Jones & Brandt, 2020; Perry et al., 2010; Twomey et al., 2018; Wonnacott

et al., 2012), anagram completion (Goode et al., 2008), perceptual learning (Lovibond et al., 2020;

Manenti et al., 2023; Robson et al., 2022; Zaman et al., 2021), trajectory extrapolation (Fulvio

et al., 2014), cognitive control tasks (Moshon-Cohen et al., 2024; Sabah et al., 2019), associative

learning (Fan et al., 2022; Lee et al., 2019; Livesey & McLaren, 2019; Prada & Garcia-Marques,

2020; Reichmann et al., 2023), visual search (George & Egner, 2021; Gonzalez & Madhavan, 2011;

T. A. Kelley & Yantis, 2009), voice identity learning (Lavan et al., 2019), face recognition (Burton

et al., 2016; Honig et al., 2022; Menon et al., 2015), the perception of social group heterogeneity

(Gershman & Cikara, 2023; Konovalova & Le Mens, 2020; Linville & Fischer, 1993; Park & Hastie,

1987) , simple motor learning (Braun et al., 2009; Kerr & Booth, 1978; Roller et al., 2001; Willey

& Liu, 2018a), sports training (Breslin et al., 2012; Green et al., 1995; North et al., 2019), and

complex skill learning (Hacques et al., 2022; Huet et al., 2011; Seow et al., 2019). See Czyż (2021)

or Raviv et al. (2022) for more detailed reviews.

Research on the effects of varied training typically manipulates variability in one of two ways. In

the first approach, a high variability group is exposed to a greater number of unique instances

during training, while a low variability group receives fewer unique instances with more repetitions.

Alternatively, both groups may receive the same number of unique instances, but the high variability

group’s instances are more widely distributed or spread out in the relevant psychological space,

while the low variability group’s instances are clustered more tightly together. Researchers then

compare the training groups in terms of their performance during the training phase, as well as their

generalization performance during a testing phase. Researchers usually compare the performance

of the two groups during both the training phase and a subsequent testing phase. The primary

theoretical interest is often to assess the influence of training variability on generalization to novel

testing items or conditions. However, the test may also include some or all of the items that were

used during the training stage, allowing for an assessment of whether the variability manipulation
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influenced the learning of the trained items themselves, or to easily measure how much performance

degrades as a function of how far away testing items are from the training items.

The influence of training variability has received a large amount of attention in the domain of

sensorimotor skill learning. Much of this research has been influenced by the work of Schmidt

(1975), who proposed a schema-based account of motor learning as an attempt to address the

longstanding problem of how novel movements are produced. Schema theory presumes that learners

possess general motor programs for a class of movements (e.g., an underhand throw). When called

up for use motor programs are parameterized by schema rules which determine how the motor

program is parameterized or scaled to the particular demands of the current task. Schema theory

predicts that variable training facilitates the formation of more robust schemas, which will result

in improved generalization or transfer. Experiments that test this hypothesis are often designed

to compare the transfer performance of a constant-trained group against that of a varied-trained

group. Both groups train on the same task, but the varied group practices with multiple instances

along some task-relevant dimension that remains invariant for the constant group. For example,

studies using a projectile throwing task might assign participants to either constant training that

practice throwing from a single location, or to a varied group that throws from multiple locations.

Following training, both groups are then tested from novel throwing locations (Pacheco & Newell,

2018; Pigott & Shapiro, 1984; Willey & Liu, 2018a; Wulf, 1991).

One of the earliest and still often cited investigations of Schmidt’s benefits of variability hypothesis

was the work of Kerr & Booth (1978). Two groups of children, aged 8 and 12, were assigned

to either constant or varied training of a bean bag throwing task. The constant group practiced

throwing a bean-bag at a small target placed 3 feet in front of them, and the varied group practiced

throwing from a distance of both 2 feet and 4 feet. Participants were blindfolded and unable to see

the target while making each throw but would receive feedback by looking at where the beanbag

had landed in between each training trial. 12 weeks later, all of the children were given a final test

from a distance of 3 feet which was novel for the varied participants and repeated for the constant

participants. Participants were also blindfolded for testing and did not receive trial by trial feedback

in this stage. In both age groups, participants performed significantly better in the varied condition

than the constant condition, though the effect was larger for the younger, 8-year-old children. This

result provides particularly strong evidence for the benefits of varied practice, as the varied group

outperformed the constant group even when tested at the “home-turf” distance that the constant
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group had exclusively practiced. A similar pattern of results was observed in another study wherein

varied participants trained with tennis, squash, badminton, and short-tennis rackets were compared

against constant subjects trained with only a tennis racket (Green et al., 1995). One of the testing

conditions had subjects repeat the use of the tennis racket, which had been used on all 128 training

trials for the constant group, and only 32 training trials for the varied group. Nevertheless, the

varied group outperformed the constant group when using the tennis racket at testing, and also

performed better in conditions with several novel racket lengths. However, as is the case with many

of the patterns commonly observed in the “benefits of variability” literature, the pattern wherein

the varied group outperfroms the constant group even from the constants group’s home turf has not

been consistently replicated. One recent study attempted a near replication of the Kerr & Booth

study (Willey & Liu, 2018b), having subjects throw beanbags at a target, with the varied group

training from positions (5 and 9 feet) on either side of the constant group (7 feet). This study

did not find a varied advantage from the constant training position, though the varied group did

perform better at distances novel to both groups. However, this study diverged from the original in

that the participants were adults; and the amount of training was much greater (20 sessions with

60 practice trials each, spread out over 5-7 weeks).

Pitting varied against constant practice against each other on the home turf of the constant group

provides a compelling argument for the benefits of varied training, as well as an interesting challenge

for theoretical accounts that posit generalization to occur as some function of distance. However,

despite its appeal this particular contrast is relatively uncommon in the literature. It is unclear

whether this may be cause for concern over publication bias, or just researchers feeling the design is

too risky. A far more common design is to have separate constant groups that each train exclusively

from each of the conditions that the varied group encounters (Catalano & Kleiner, 1984; Chua et

al., 2019; McCracken & Stelmach, 1977; Moxley, 1979; Newell & Shapiro, 1976), or for a single

constant group to train from just one of the conditions experienced by the varied participants

(Pigott & Shapiro, 1984; Roller et al., 2001; Wrisberg & McLean, 1984; Wrisberg & Mead, 1983).

A less common contrast places the constant group training in a region of the task space outside

of the range of examples experienced by the varied group, but distinct from the transfer condition

(Wrisberg et al., 1987; Wulf & Schmidt, 1997). Of particular relevance to the current work is the

early study of Catalano & Kleiner (1984), as theirs was one of the earliest studies to investigate the

influence of varied vs. constant training on multiple testing locations of graded distance from the

training condition. Participants were trained on coincident timing task, in which subjects observe
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a series of lightbulbs turning on sequentially at a consistent rate and attempt to time a button

response with the onset of the final bulb. The constant groups trained with a single velocity of

either 5,7,9, or 11 mph, while the varied group trained from all 4 of these velocities. Participants

were then assigned to one of four possible generalization conditions, all of which fell outside of

the range of the varied training conditions – 1, 3, 13 or 15 mph. As is often the case, the varied

group performed worse during the training phase. In the testing phase, the general pattern was for

all participants to perform worse as the testing conditions became further away from the training

conditions, but since the drop off in performance as a function of distance was far less steep for

the varied group, the authors suggested that varied training induced a decremented generalization

gradient, such that the varied participants were less affected by the change between training and

testing conditions.

Benefits of varied training have also been observed in many studies outside of the sensorimotor

domain. Goode et al. (2008) trained participants to solve anagrams of 40 different words ranging

in length from 5 to 11 letters, with an anagram of each word repeated 3 times throughout training,

for a total of 120 training trials. Although subjects in all conditions were exposed to the same 40

unique words (i.e. the solution to an anagram), participants in the varied group saw 3 different

arrangements for each solution-word, such as DOLOF, FOLOD, and OOFLD for the solution word

FLOOD, whereas constant subjects would train on three repetitions of LDOOF (spread evenly

across training). Two different constant groups were used. Both constant groups trained with three

repetitions of the same word scramble, but for constant group A, the testing phase consisted of the

identical letter arrangement to that seen during training (e.g., LDOOF), whereas for constant group

B, the testing phase consisted of a arrangement they had not seen during training, thus presenting

them with a testing situation similar situation to the varied group. At the testing stage, the varied

group outperformed both constant groups, a particularly impressive result, given that constant

group A had three prior exposures to the word arrangement (i.e. the particular permutation of

letters) which the varied group had not explicitly seen. However varied subjects in this study

did not exhibit the typical decrement in the training phase typical of other varied manipulations

in the literature, and actually achieved higher levels of anagram solving accuracy by the end of

training than either of the constant groups – solving two more anagrams on average than the

constant group. This might suggest that for tasks of this nature where the learner can simply get

stuck with a particular word scramble, repeated exposure to the identical scramble might be less

helpful towards finding the solution than being given a different arrangement of the same letters.

17



This contention is supported by the fact that constant group A, who was tested on the identical

arrangement as they experienced during training, performed no better at testing than did constant

group B, who had trained on a different arrangement of the same word solution – further suggesting

that there may not have been a strong identity advantage in this task.

In the domain of category learning, the constant vs. varied comparison is much less suitable.

Instead, researchers will typically employ designs where all training groups encounter numerous

stimuli, but one group experiences a greater number of unique exemplars (Brunstein & Gonzalez,

2011; Doyle & Hourihan, 2016; Hosch et al., 2023; Nosofsky et al., 2019; Wahlheim et al., 2012), or

designs where the number of unique training exemplars is held constant, but one group trains with

items that are more dispersed, or spread out across the category space (Bowman & Zeithamova,

2020; Homa & Vosburgh, 1976; Hu & Nosofsky, 2024; Maddox & Filoteo, 2011; Posner & Keele,

1968).

Much of the earlier work in this sub-area trained subjects on artificial categories, such as dot

patterns (Homa & Vosburgh, 1976; Posner & Keele, 1968). A seminal study by Posner & Keele

(1968) trained participants to categorize artificial dot patterns, manipulating whether learners were

trained with low variability examples clustered close to the category prototypes (i.e. low distortion

training patterns), or higher-variability patterns spread further away from the prototype (i.e. high-

distortion patterns). Participants that received training on more highly-distorted items showed

superior generalization to novel high distortion patterns in the subsequent testing phase. It should

be noted that unlike the sensorimotor studies discussed earlier, the Posner & Keele (1968) study

did not present low-varied and high-varied participants with an equal number of training rathers,

but instead had participants remain in the training stage of the experiment until they reached

a criterion level of performance. This train-until-criterion procedure led to the high-variability

condition participants tending to complete a larger number of training trials before switching to

the testing stage. More recent work (Hu & Nosofsky, 2024), also used dot pattern categories, but

matched the number of training trials across conditions. Under this procedure, higher-variability

participants tended to reach lower levels of performance by the end of the training stage. The results

in the testing phase were the opposite of Posner & Keele (1968), with the low-variability training

group showing superior generalization to novel high-distortion patterns (as well as generalization

to novel patterns of low or medium distortion levels). However, whether this discrepancy is solely

a result of the different training procedures is unclear, as the studies also differed in the nature of
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the prototype patterns used. Posner & Keele (1968) utilized simpler, recognizable prototypes (e.g.,

a triangle, the letter M, the letter F), while Hu & Nosofsky (2024) employed random prototype

patterns.

Recent studies have also begun utilizing more complex or realistic sitmuli when assessing the in-

fluence of variability on category learning. Wahlheim et al. (2012) conducted one such study. In a

within-participants design, participants were trained on bird categories with either high repetitions

of a few exemplars, or few repetitions of many exemplars. Across four different experiments, which

were conducted to address an unrelated question on metacognitive judgements, the researchers con-

sistently found that participants generalized better to novel species following training with more

unique exemplars (i.e. higher variability), while high repetition training produced significantly bet-

ter performance categorizing the specific species they had trained on. A variability advantage was

also found in the relatively complex domain of rock categorization (Nosofsky et al., 2019). For

10 different rock categories, participants were trained with either many repetitions of 3 unique

examples of each category, or few repetitions of 9 unique examples, with an equal number of total

training trials in each group (the design also included 2 other conditions less amenable to consider-

ing the impact of variation). The high-variability group, trained with 9 unique examples, showed

significantly better generalization performance than the other conditions.

A distinct sub-literature within the category learning domain has examined how the variability

or dispersion of the categories themselves influences generalization to ambiguous regions of the

category space (e.g., the region between the two categories). The general approach is to train

participants with examples from a high variability category and a low variability category. Par-

ticipants are then tested with novel items located within ambiguous regions of the category space

which allow the experimenters to assess whether the difference in category variability influenced

how far participants generalize the category boundaries. A. L. Cohen et al. (2001) conducted two

experiments with this basic paradigm. In experiment 1, a low variability category composed of 1

instance was compared against a high-variability category of 2 instances in one condition, and 7

instances in another. In experiment 2 both categories were composed of 3 instances, but for the

low-variability group the instances were clustered close to each other, whereas the high-variability

groups instances were spread much further apart. Participants were tested on an ambiguous novel

instance that was located in between the two trained categories. Both experiments provided ev-

idence that participants were much more likely to categorize the novel middle stimulus into the
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category with greater variation.

Further observations of widened generalization following varied training have since been observed

in numerous investigations (Hahn et al., 2005; Hosch et al., 2023; Hsu & Griffiths, 2010; Perlman et

al., 2012; Sakamoto et al., 2008; but see Stewart & Chater, 2002; L.-X. Yang & Wu, 2014; and Seitz

et al., 2023). The results of Sakamoto et al. (2008) are noteworthy. They first reproduced the basic

finding of participants being more likely to categorize an unknown middle stimulus into a training

category with higher variability. In a second experiment, they held the variability between the two

training categories constant and instead manipulated the training sequence, such that the examples

of one category appeared in an ordered fashion, with very small changes from one example to the

other (the stimuli were lines that varied only in length), whereas examples in the alternate category

were shown in a random order and thus included larger jumps in the stimulus space from trial to

trial. They found that the middle stimulus was more likely to be categorized into the category

that had been learned with a random sequence, which was attributed to an increased perception

of variability which resulted from the larger trial to trial discrepancies.

The work of Hahn et al. (2005), is also of particular interest to the present work. Their experimental

design was similar to previous studies, but they included a larger set of testing items which were

used to assess generalization both between the two training categories as well as novel items located

in the outer edges of the training categories. During generalization testing, participants were given

the option to respond with “neither”, in addition to responses to the two training categories.

The “neither” response was included to test how far away in the stimulus space participants would

continue to categorize novel items as belonging to a trained category. Consistent with prior findings,

high-variability training resulted in an increased probability of categorizing items in between the

training categories as belong to the high variability category. Additionally, participants trained

with higher variability also extended the category boundary further out into the periphery than

participants trained with a lower variability category were willing to do. The author compared a

variety of similarity-based models based around the Generalized Context Model (Nosofsky, 1986)

to account for their results, manipulating whether a response-bias or similarity-scaling parameter

was fit separately between variability conditions. No improvement in model fit was found by

allowing the response-bias parameter to differ between groups, however the model performance did

improve significantly when the similarity scaling parameter was fit separately. The best fitting

similarity-scaling parameters were such that the high-variability group was less sensitive to the
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distances between stimuli, resulting in greater similarity values between their training items and

testing items. This model accounted for both the extended generalization gradients of the varied

participants, and also for their poorer performance in a recognition condition.

Variability has also been examined in the learning of higher-order linguistic categories (Perry et

al., 2010). In nine training sessions spread out over nine weeks infants were trained on object

labels in a naturalistic play setting. All infants were introduced to three novel objects of the same

category, with participants in the “tight” condition being exposed to three similar exemplars of

the category, and participants in the varied condition being exposed to three dissimilar objects of

the same category. Importantly, the similarity of the objects was carefully controlled for by having

a separate group of adult subjects provide pairwise similarity judgements of the category objects

prior to the study onset. Multidimensional scaling was then performed to obtain the coordinates

of the objects psychological space, and out of the 10 objects for each category, the 3 most similar

objects were selected for the tight group and the three least similar objects for the varied group,

with the leftover four objects being retained for testing. By the end of the nine weeks, all of

the infants had learned the labels of the training objects. In the testing phase, the varied group

demonstrated superior ability to correctly generalize the object labels to untrained exemplars of the

same category. More interesting was the superior performance of the varied group on a higher order

generalization task – such that they were able to appropriately generalize the bias they had learned

during training for attending to the shape of objects to novel solid objects, but not to non-solids.

The tight training group, on the other hand, tended to overgeneralize the shape bias, leading the

researchers to suggest that the varied training induced a more context-sensitive understanding of

when to apply their knowledge.

Of course, the relationship between training variability and transfer is unlikely to be a simple

function wherein increased variation is always beneficial. Numerous studies have found null, or in

some cases negative effects of training variation (DeLosh et al., 1997; Sinkeviciute et al., 2019; Van

Rossum, 1990; Wrisberg et al., 1987), and many more have suggested that the benefits of variability

may depend on additional factors such as prior task experience, the order of training trials, or the

type of transfer being measured (Berniker et al., 2014; Braithwaite & Goldstone, 2015; Hahn et al.,

2005; Lavan et al., 2019; North et al., 2019; Sadakata & McQueen, 2014; Zaman et al., 2021).

In an example of a more complex influence of training variation, (Braithwaite & Goldstone, 2015)

trained participants on example problems involving the concept of sampling with replacement
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(SWR). Training consisted of examples that were either highly similar in their semantic context

(e.g., all involving people selecting objects) or in which the surface features were varied between

examples (e.g., people choosing objects AND objects selected in a sequence). The experimenters

also surveyed how much prior knowledge each participant had with SWR. They found that whether

variation was beneficial depended on the prior knowledge of the participants – such that participants

with some prior knowledge benefited from varied training, whereas participants with minimal prior

knowledge performed better after training with similar examples. The authors hypothesized that

in order to benefit from varied examples, participants must be able to detect the structure common

to the diverse examples, and that participants with prior knowledge are more likely to be sensitive

to such structure, and thus to benefit from varied training. To test this hypothesis more directly,

the authors conducted a 2nd experiment, wherein they controlled prior knowledge by exposing

some subjects to a short graphical or verbal pre-training lesson, designed to increase sensitivity

to the training examples. Consistent with their hypothesis, participants exposed to the structural

sensitivity pre-training benefited more from varied training than the controls participants who

benefited more from training with similar examples. Interactions between prior experience and

the influence of varied training have also been observed in sensorimotor learning (Del Rey et al.,

1982; Guadagnoli et al., 1999). Del Rey et al. (1982) recruited participants who self-reported

either extensive, or very little experience with athletic activities, and then trained participants on

a coincident timing task under with either a single constant training velocity, with one of several

varied training procedures. Unsurprisingly, athlete participants had superior performance during

training, regardless of condition, and training performance was superior for all subjects in the

constant group. Of greater interest is the pattern of testing results from novel transfer conditions.

Among the athlete-participants, transfer performance was best for those who received variable

training. Non-athletes showed the opposite pattern, with superior performance for those who had

constant training.

Existing Theoretical Frameworks

A number of theoretical frameworks have been proposed to conceptually explain the effects of varied

training on learning and generalization. Schema theory (described in more detail above), posts that

varied practice leads to the formation of more flexible motor schemas, which then facilitate gener-

alization (Schmidt, 1975). The desirable difficulties framework (Bjork & Bjork, 2011; Soderstrom
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& Bjork, 2015) proposes that variable practice conditions may impair initial performance but then

enhance longer-term retention and transfer. Similarly, the challenge point framework (Guadagnoli

& Lee, 2004) contends that training variation induces optimal learning occurs insofar as it causes

the difficulty of practice tasks to be appropriately matched to the learner’s capabilities, but may

also be detrimental if the amount of variation causes the task to be too difficult.

While these frameworks offer valuable conceptual accounts, there has been a limited application of

computational modeling efforts aimed at quantitatively assessing and comparing the learning and

generalization mechanisms which may be underlying the influence of variability in visuomotor skill

learning. In contrast, the effects of variability have received more formal computational treatment in

other domains, such as category learning Hu & Nosofsky (2024), language learning (Jones & Brandt,

2020), and function learning (DeLosh et al., 1997). A primary goal of the current dissertation is

to to address this gap by adapting and applying modeling approaches from these other domains

to investigate the effects of training variability in visuomotor skill learning and function learning

tasks.

The current work

The overarching purpose of this dissertation is to investigate the effects of training variability on

learning and generalization within visuomotor skill learning and function learning. Our investi-

gation is structured into two main projects, each employing distinct experimental paradigms and

computational modeling frameworks to elucidate how and when variability in training enhances or

impedes subsequent generalization.

In Project 1, we investigated the influence of varied practice in a simple visuomotor projectile

launching task. Experiments 1 and 2 compared the performance of constant and varied training

groups to assess potential benefits of variability on transfer to novel testing conditions. To account

for the observed empirical effects, we introduced the Instance-based Generalization with Adaptive

Similarity (IGAS) model. IGAS provides a novel computational approach for quantifying the

similarity between training experiences and transfer conditions, while also allowing for variability

to influence the generalization gradient itself.

Project 2 shifted focus to the domain of function learning by employing a visuomotor extrapolation

task. Across three experiments, we examined how constant and varied training regimes affected

learning, discrimination between stimuli, and the ability to extrapolate to novel regions of the
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function’s input space. To model human performance in this task, we fit the influential Asso-

ciative Learning Model (ALM) and the Extrapolation-Association Model (EXAM) to individual

participant data using advanced Bayesian parameter estimation techniques.
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Project 1

Abstract

Exposing learners to variability during training has been demonstrated to improve performance

in subsequent transfer testing. Such variability benefits are often accounted for by assuming that

learners are developing some general task schema or structure. However, much of this research has

neglected to account for differences in similarity between varied and constant training conditions. In

a between-groups manipulation, we trained participants on a simple projectile launching task, with

either varied or constant conditions. We replicate previous findings showing a transfer advantage of

varied over constant training. Furthermore, we show that a standard similarity model is insufficient

to account for the benefits of variation, but, if the model is adjusted to assume that varied learners

are tuned towards a broader generalization gradient, then a similarity-based model is sufficient

to explain the observed benefits of variation. Our results therefore suggest that some variability

benefits can be accommodated within instance-based models without positing the learning of some

schemata or structure.

Introduction

Similarity and instance-based approaches to transfer of learning

Early models of learning often assumed that discrete experiences with some task or category were

not stored individually in memory, but instead promoted the formation of a summary represen-

tation, often referred to as a prototype or schema, and that exposure to novel examples would

then prompt the retrieval of whichever preexisting prototype was most similar. In addition to

being a landmark study on the influence of training variability, Posner & Keele (1968) (described

above) also put forward an influential argument concerning the nature of the mental representa-

tions acquired during learning - namely that learners tend to abstract a prototype, or aggregate

representation of the dot pattern categories, rather than encoding each individual stimuli. Recall

that participants are trained on only on distortions of the category prototypes (e.g., low, medium

or high distortions), never encountering the exact prototypes during the training stage. Then, in

the testing phase, participants are tested with the prototype patterns, their old training items,

and novel low, medium and high distortions. The authors found that participants had the highest
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testing accuracy for the previously unseen prototype patterns, followed by the old training items,

and then the novel low, medium and high distortions. The authors interpreted this pattern as

evidence that participants had acquired prototype representation of the category, as opposed to

storing each individual training instance, and that generalization was based on the similarity of the

testing items to the learned prototype representations. Posner & Keele (1968) has been extremely

influential, and continues to be cited as evidence that prototype abstraction underlies the benefits

of varied training. It’s also referenced as a key influence in the development of the “Schema Theory

of Motor Learning” Schmidt (1975), which in turn influenced decades of research on the potential

benefits of varied training in motor skill learning. However a number of the core assumptions uti-

lized by Posner & Keele (1968) were later called into question both empirically and with competing

theoretical accounts (Hintzman, 1984, 1986; Knapp & Anderson, 1984; McClelland & Rumelhart,

1985; Nosofsky & Kruschke, 1992; Palmeri & Nosofsky, 2001; Zaki & Nosofsky, 2007). Palmeri

& Nosofsky (2001) demonstrated both the dangers of assuming that psychological representations

mimic the metric stimulus space, as well the viability of models with simpler representational as-

sumptions. These authors conducted a near replication of the Posner & Keele (1968) study, but

also had participants provide similarity judgements of the dot pattern stimuli after completing the

training phase. A multidimensional scaling analysis of the similarity judgements revelead that the

psychological representations of the prototype stimuli were not located in the middle of the training

stimuli, but were instead extreme points in the psychological space. The authors also demonstrated

the generalization patterns of Posner & Keele (1968) could be accounted for by an exemplar-based

model, without any need to assume the abstraction of a prototype.

Instance-based, or exemplar-based models generally assume that learners encode each experience

with a task as a separate instance/exemplar/trace, and that each encoded trace is in turn compared

against novel stimuli (Estes, 1994; Hintzman, 1984; Jamieson et al., 2022; Medin & Schaffer, 1978;

Nosofsky, 1986). As the number of stored instances increases, so does the likelihood that some

previously stored instance will be retrieved to aid in the performance of a novel task. Stored

instances are retrieved in the context of novel stimuli or tasks if they are sufficiently similar, thus

suggesting that the process of computing similarity is of central importance to generalization.

Similarity, defined in this literature as a function of psychological distance between instances or

categories, has provided a successful account of generalization across numerous tasks and domains.

In an influential study demonstrating an ordinal similarity effect, experimenters employed a nu-
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merosity judgment task in which participants quickly report the number of dots flashed on a screen.

Performance (in terms of response times to new patterns) on novel dot configurations varied as an

inverse function of their similarity to previously trained dot configurations Palmeri (1997). That is,

performance was better on novel configurations moderately similar to trained configurations than

to configurations with low-similarity, and also better on low-similarity configurations than to even

less similar, unrelated configurations. Instance-based similarity approaches have had some success

accounting for performance in certain sub-domains of motor learning (R. G. Cohen & Rosenbaum,

2004; Crump & Logan, 2010; Meigh et al., 2018; Poldrack et al., 1999; Wifall et al., 2017). Crump

& Logan (2010) trained participants to type words on an unfamiliar keyboard, while constraining

the letters composing the training words to a pre-specified letter set. Following training, typing

speed was tested on previously experienced words composed of previously experienced letters; novel

words composed of letters from the trained letter set; and novel words composed of letters from an

untrained letter set. Consistent with an instance-based account, transfer performance was graded

such that participants were fastest at typing the words they had previously trained on, followed

by novel words composed of letters they had trained on, and slowest performance for new words

composed of untrained letters.

Issues with Previous Research

Although the benefits of training variation in visuomotor skill learning have been observed many

times, null findings have also been repeatedly found, leading some researchers to question the

veracity of the variability of practice hypothesis (Newell, 2003; Van Rossum, 1990). Critics have

also pointed out that investigations of the effects of training variability, of the sort described above,

often fail to control for the effect of similarity between training and testing conditions. For training

tasks in which participants have numerous degrees of freedom (e.g., projectile throwing tasks where

participants control the x and y velocity of the projectile), varied groups are likely to experience

a wider range of the task space over the course of their training (e.g., more unique combinations

of x and y velocities). Experimenters may attempt to account for this possibility by ensuring

that the training location(s) of the varied and constant groups are an equal distance away from

the eventual transfer locations, such that their training throws are, on average, equally similar to

throws that would lead to good performance at the transfer locations. However, even this level

of experimental control may still be insufficient to rule out the effect of similarity on transfer.
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Given that psychological similarity is typically best described as either a Gaussian or exponentially

decaying function of psychological distance (Ennis et al., 1988; Ghahramani et al., 1996; Logan,

1988; Nosofsky, 1992; Shepard, 1987; Thoroughman & Taylor, 2005), it is plausible that a subset

of the most similar training instances could have a disproportionate impact on generalization to

transfer conditions, even if the average distance between training and transfer conditions is identical

between groups. Figure 1 demonstrates the consequences of a generalization gradient that drops

off as a Gaussian function of distance from training, as compared to a linear drop-off.
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Figure 1: Left panel- Generalization predicted from a simple model that assumes a linear general-
ization function. A varied group (red vertical lines indicate the 2 training locations) trained from
positions 400 and 800, and a constant group (blue vertical line), trained from position 600. Right
panel- if a Gaussian generalization function is assumed, then varied training (400, 800) is predicted
to result in better generalization to positions close to 400 and 800 than does constant training at
600. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

In addition to largely overlooking the potential for non-linear generalization to confound inter-

pretations of training manipulations, the visuomotor skill learning literature also rarely considers

alternatives to schema representations (Chamberlin & Magill, 1992b). Although schema-theory

remains influential within certain literatures, instance or exemplar-based models have accounted

for human behavior across myriad domains (Jamieson et al., 2022; Logan, 2002). As mentioned

above, instance based accounts have been shown to perform well on a variety of different tasks with
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motoric components (Crump & Logan, 2010; Gandolfo et al., 1996; Meigh et al., 2018; Rosenbaum

et al., 1995; van Dam & Ernst, 2015). However, such accounts have received little attention within

the subdomain of visuomotor skill learning focused on the benefits of varied training.

The present work examines whether the commonly observed benefits of varied training can be

accounted for by a theoretrically motivated measure of the similarity between training throws and

the testing solution space. We first attempt to replicate previous work finding an advantage of

varied training over constant training in a projectile launching task. We then examine the extent

to which this advantage can be explained by an instance-based similarity model.

Experiment 1

Methods

Sample Size Estimation

To obtain an independent estimate of effect size, we identified previous investigations which included

between-subjects contrasts of varied and constant conditions following training on an accuracy based

projectile launching task (Chua et al., 2019; Goodwin et al., 1998; Kerr & Booth, 1978; Wulf, 1991).

We then averaged effects across these studies, yielding a Cohen’s f =.43. The GPower 3.1 software

package (Faul et al., 2009) was then used to determine that a power of 80% requires a sample size

of at least 23 participants per condition. All experiments reported in the present manuscript exceed

this minimum number of participants per condition.

Participants

Participants were recruited from an undergraduate population that is 63% female and consists

almost entirely of individuals aged 18 to 22 years. A total of 110 Indiana University psychology

students participated in Experiment 1. We subsequently excluded 34 participants for poor per-

formance on one of the dependent measures of the task (2.5-3 standard deviations worse than the

median subject at the task) or for displaying a pattern of responses that was clearly indicative of a

lack of engagement with the task (e.g., simply dropping the ball on each trial rather than throwing

it at the target), or for reporting that they completed the experiment on a phone or tablet device,

despite the instructions not to use one of these devices. A total of 74 participants were retained

for the final analyses, 35 in the varied group and 39 in the constant group.
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Task

The experimental task was programmed in JavaScript, using packages from the Phaser physics

engine (https://phaser.io) and the jsPsych library (de Leeuw, 2015). The stimuli, presented on a

black background, consisted of a circular blue ball – controlled by the participant via the mouse or

trackpad cursor; a rectangular green target; a red rectangular barrier located between the ball and

the target; and an orange square within which the participant could control the ball before releasing

it in a throw towards the target. Because the task was administered online, the absolute distance

between stimuli could vary depending on the size of the computer monitor being used, but the

relative distance between the stimuli was held constant. Likewise, the distance between the center

of the target and the training and testing locations was scaled such that relative distances were

preserved regardless of screen size. For the sake of brevity, subsequent mentions of this relative

distance between stimuli, or the position where the ball landed in relation to the center of the

target, will be referred to simply as distance. Figure 2 displays the layout of the task, as it would

appear to a participant at the start of a trial, with the ball appearing in the center of the orange

square. Using a mouse or trackpad, participants click down on the ball to take control of the ball,

connecting the movement of the ball to the movement of the cursor. Participants can then “wind

up” the ball by dragging it (within the confines of the orange square) and then launch the ball

by releasing the cursor. If the ball does not land on the target, participants are presented with

feedback in red text at the top right of the screen, on how many units away they were from the

center of the target. If the ball was thrown outside of the boundary of the screen participants

are given feedback as to how far away from the target center the ball would have been if it had

continued its trajectory. If the ball strikes the barrier (from the side or by landing on top), feedback

is presented telling participants to avoid hitting the barrier. If participants drag the ball outside

of the orange square before releasing it, the trial terminates, and they are reminded to release the

ball within the orange square. If the ball lands on the target, feedback is presented in green text,

confirming that the target was hit, and presenting additional feedback on how many units away

the ball was from the exact center of the target.

Link to abbrevaited example of task.
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Figure 2: The stimuli of the task consisted of a blue ball, which the participants would launch
at the green target, while avoiding the red barrier. On each trial, the ball would appear in the
center of the orange square, with the position of the orange square varying between experimental
conditions. Participants were constrained to release the ball within the square.

Results

Data Processing and Statistical Packages

To prepare the data, we first removed trials that were not easily interpretable as performance

indicators in our task. Removed trials included: 1) those in which participants dragged the ball

outside of the orange starting box without releasing it, 2) trials in which participants clicked on

the ball, and then immediately released it, causing the ball to drop straight down, 3) outlier trials

in which the ball was thrown more than 2.5 standard deviations further than the average throw

(calculated separately for each throwing position), and 4) trials in which the ball struck the barrier.

The primary measure of performance used in all analyses was the absolute distance away from

the center of the target. The absolute distance was calculated on every trial, and then averaged

within each subject to yield a single performance score, for each position. A consistent pattern

across training and testing phases in both experiments was for participants to perform worse from

throwing positions further away from the target – a pattern which we refer to as the difficulty of the

positions. However, there were no interactions between throwing position and training conditions,

allowing us to collapse across positions in cases where contrasts for specific positions were not of

interest. All data processing and statistical analyses were performed in R version 4.32 (Team,

2020). ANOVAs for group comparisons were performed using the rstatix package (Kassambara,

2021).

Training Phase
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Figure 3 below shows aggregate training performance binned into three stages representing the

beginning, middle, and end of the training phase. Because the two conditions trained from tar-

get distances that were not equally difficult, it was not possible to directly compare performance

between conditions in the training phase. Our focus for the training data analysis was instead to

establish that participants did improve their performance over the course of training, and to exam-

ine whether there was any interaction between training stage and condition. Descriptive statistics

for the intermittent testing phase are provided in the supplementary materials.

We performed an ANOVA comparison with stage as a within-group factor and condition as between-

group factor. The analysis revealed a significant effect of training stage F(2,142)=62.4, p<.001, 𝜂2𝐺
= .17, such that performance improved over the course of training. There was no significant effect

of condition F(1,71)=1.42, p=.24, 𝜂2𝐺 = .02, and no significant interaction between condition and

training stage, F(2,142)=.10, p=.91, 𝜂2𝐺 < .01.
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Figure 3: Training performance for varied and constant participants binned into three stages.
Shorter bars indicate better performance (ball landing closer to the center of the target). Error
bars indicate standard error of the mean.

Testing Phase

In Experiment 1, a single constant-trained group was compared against a single varied-trained

group. At the transfer phase, all participants were tested from 3 positions: 1) the positions(s)
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from their own training, 2) the training position(s) of the other group, and 3) a position novel

to both groups. Overall, group performance was compared with a mixed type III ANOVA, with

condition (varied vs. constant) as a between-subject factor and throwing location as a within-subject

variable. The effect of throwing position was strong, F(3,213) = 56.12, p<.001, �2G = .23. The

effect of training condition was significant F(1,71)=8.19, p<.01, �2G = .07. There was no significant

interaction between group and position, F(3,213)=1.81, p=.15, �2G = .01.

0

100

200

300

610
 Varied Trained

760
 Constant Trained

835
 Novel Location

910
 Varied Trained

Testing Location

M
ea

n 
D

is
ta

nc
e 

F
ro

m
 C

en
te

r 
O

f T
ar

ge
t

Training Condition constant varied

Figure 4: Testing performance for each of the 4 testing positions, compared between training
conditions. Positions 610 and 910 were trained on by the varied group, and novel for the constant
group. Position 760 was trained on by the constant group, and novel for the varied group. Position
835 was novel for both groups. Shorter bars are indicative of better performance (the ball landing
closer to the center of the target). Error bars indicate standard error of the mean.

Table 1: Testing performance for varied and constant groups in experiment 1. Mean absolute
deviation from the center of the target, with standard deviations in parenthesis.

Position Constant Varied

610 132.48(50.85) 104.2(38.92)

760 207.26(89.19) 167.12(72.29)
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Table 1: Testing performance for varied and constant groups in experiment 1. Mean absolute
deviation from the center of the target, with standard deviations in parenthesis.

Position Constant Varied

835 249.13(105.92) 197.22(109.71)

910 289.36(122.48) 212.86(113.93)

Discussion

In Experiment 1, we found that varied training resulted in superior testing performance than

constant training, from both a position novel to both groups, and from the position at which

the constant group was trained, which was novel to the varied condition. The superiority of varied

training over constant training even at the constant training position is of particular note, given that

testing at this position should have been highly similar for participants in the constant condition.

It should also be noted, though, that testing at the constant trained position is not exactly identical

to training from that position, given that the context of testing is different in several ways from

that of training, such as the testing trials from the different positions being intermixed, as well

as a simple change in context as a function of time. Such contextual differences will be further

considered in the General Discussion.

In addition to the variation of throwing position during training, the participants in the varied

condition of Experiment 1 also received training practice from the closest/easiest position, as well

as from the furthest/most difficult position that would later be encountered by all participants

during testing. The varied condition also had the potential advantage of interpolating both of the

novel positions from which they would later be tested. Experiment 2 thus sought to address these

issues by comparing a varied condition to multiple constant conditions.

Experiment 2

In Experiment 2, we sought to replicate our findings from Experiment 1 with a new sample of

participants, while also addressing the possibility of the pattern of results in Experiment 1 being

explained by some idiosyncrasy of the particular training location of the constant group relative to

the varied group. To this end, Experiment 2 employed the same basic procedure as Experiment 1,
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but was designed with six separate constant groups each trained from one of six different locations

(400, 500, 625, 675, 800, or 900), and a varied group trained from two locations (500 and 800).

Participants in all seven groups were then tested from each of the 6 unique positions.

Methods

Participants

A total of 306 Indiana University psychology students participated in Experiment 2, which was

also conducted online. As was the case in Experiment 1, the undergraduate population from which

we recruited participants was 63% female and primarily composed of 18–22-year-old individuals.

Using the same procedure as Experiment 1, we excluded 98 participants for exceptionally poor

performance at one of the dependent measures of the task, or for displaying a pattern of responses

indicative of a lack of engagement with the task. A total of 208 participants were included in the

final analyses with 31 in the varied group and 32, 28, 37, 25, 29, 26 participants in the constant

groups training from location 400, 500, 625, 675, 800, and 900, respectively. All participants were

compensated with course credit.

Task and Procedure

The task of Experiment 2 was identical to that of Experiment 1, in all but some minor ad-

justments to the height of the barrier, and the relative distance between the barrier and the

target. Additionally, the intermittent testing trials featured in experiment 1 were not utilized

in Experiment 2. An abbreviated demo of the task used for Experiment 2 can be found at

(https://pcl.sitehost.iu.edu/tg/demos/igas_expt2_demo.html).

The procedure for Experiment 2 was also quite similar to Experiment 1. Participants completed

140 training trials, all of which were from the same position for the constant groups and split evenly

(70 trials each - randomized) for the varied group. In the testing phase, participants completed

30 trials from each of the six locations that had been used separately across each of the constant

groups during training. Each of the constant groups thus experienced one trained location and

five novel throwing locations in the testing phase, while the varied group experiences 2 previously

trained, and 4 novel locations.
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Results

Data Processing and Statistical Packages

After confirming that condition and throwing position did not have any significant interactions, we

standardized performance within each position, and then average across position to yield a single

performance measure per participant. This standardization did not influence our pattern of results.

As in Experiment 1, we performed type III ANOVAs due to our unbalanced design, however the

pattern of results presented below is not altered if type 1 or type III tests are used instead. The

statistical software for the primary analyses was the same as for Experiment 1. Individual learning

rates in the testing phase, compared between groups in the supplementary analyses, were fit using

the TEfit package in R (Cochrane, 2020).

Training Phase

The different training conditions trained from positions that were not equivalently difficult and are

thus not easily amenable to comparison. As previously stated, the primary interest of the training

data is confirmation that some learning did occur. Figure 5 depicts the training performance of

the varied group alongside that of the aggregate of the six constant groups (5a), and each of the

6 separate constant groups (5b). An ANOVA comparison with training stage (beginning, middle,

end) as a within-group factor and group (the varied condition vs. the 6 constant conditions collapsed

together) as a between-subject factor revealed no significant effect of group on training performance,

F(1,206)=.55,p=.49, 𝜂2𝐺 <.01, a significant effect of training stage F(2,412)=77.91, p<.001, 𝜂2𝐺 =.05,

and no significant interaction between group and training stage, F(2,412)=.489 p=.61, 𝜂2𝐺 <.01. We

also tested for a difference in training performance between the varied group and the two constant

groups that trained matching throwing positions (i.e., the constant groups training from position

500, and position 800). The results of our ANOVA on this limited dataset mirrors that of the

full-group analysis, with no significant effect of group F(1,86)=.48, p=.49, 𝜂2𝐺 <.01, a significant

effect of training stage F(2,172)=56.29, p<.001, 𝜂2𝐺 =.11, and no significant interaction between

group and training stage, F(2,172)=.341 p=.71, 𝜂2𝐺 <.01.
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Figure 5: Training performance for the six constant conditions, and the varied condition, binned
into three stages. On the left side, the six constant groups are averaged together, as are the two
training positions for the varied group. On the right side, the six constant groups are shown
separately, with each set of bars representing the beginning, middle, and end of training for a single
constant group that trained from the position indicated on the x-axis. Figure 5b also shows training
performance separately for both of the throwing locations trained by the varied group. Error bars
indicate standard error of the mean.

Testing Phase

In Experiment 2, a single varied condition (trained from two positions, 500 and 800), was compared

against six separate constant groups (trained from a single position, 400, 500, 625, 675, 800 or 900).

For the testing phase, all participants were tested from all six positions, four of which were novel

for the varied condition, and five of which were novel for each of the constant groups. For a general

comparison, we took the absolute deviations for each throwing position and computed standardized

scores across all participants, and then averaged across throwing position. The six constant groups

were then collapsed together allowing us to make a simple comparison between training conditions
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(constant vs. varied). A type III between-subjects ANOVA was performed, yielding a significant

effect of condition F(1,206)=4.33, p=.039, 𝜂2𝐺 =.02. Descriptive statistics for each condition are

shown in table 2. In Figure 6 visualizes the consistent advantage of the varied condition over

the constant groups across the testing positions. Figure 6 shows performance between the varied

condition and the individual constant groups.
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Figure 6: Testing phase performance from each of the six testing positions. The six constant condi-
tions are averaged together into a single constant group, compared against the single varied-trained
group.B) Transfer performance from each of the 6 throwing locations from which all participants
were tested. Each bar represents performance from one of seven distinct training groups (six con-
stant groups in red, one varied group in blue). The x axis labels indicate the location(s) from which
each group trained. Lower values along the y axis reflect better performance at the task (closer
distance to target center). Error bars indicate standard error of the mean.
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Table 2: Transfer performance from each of the 6 throwing locations from which all participants
were tested. Each bar represents performance from one of seven distinct training groups (six
constant groups in red, one varied group in blue). The x axis labels indicate the location(s) from
which each group trained. Lower values along the y axis reflect better performance at the task
(closer distance to target center). Error bars indicate standard error of the mean.

Position Constant Varied

400 100.59(46.3) 83.92(33.76)

500 152.28(69.82) 134.38(61.38)

625 211.21(90.95) 183.51(75.92)

675 233.32(93.35) 206.32(94.64)

800 283.24(102.85) 242.65(89.73)

900 343.51(114.33) 289.62(110.07)

Next, we compared the testing performance of constant and varied groups from only positions that

participants had not encountered during training. Constant participants each had 5 novel positions,

whereas varied participants tested from 4 novel positions (400,625,675,900). We first standardized

performance within in each position, and then averaged across positions. Here again, we found a

significant effect of condition (constant vs. varied): F(1,206)=4.30, p=.039, 𝜂2𝐺 = .02 .

Table 3: Testing performance from novel positions. Includes data only from positions that were not
encountered during the training stage (e.g., excludes positions 500 and 800 for the varied group, and
one of the six locations for each of the constant groups). Table presents Mean absolute deviations
from the center of the target, and standard deviations in parenthesis.

Position Constant Varied

400 98.84(45.31) 83.92(33.76)

500 152.12(69.94) NA

625 212.91(92.76) 183.51(75.92)

675 232.9(95.53) 206.32(94.64)

800 285.91(102.81) NA
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Table 3: Testing performance from novel positions. Includes data only from positions that were not
encountered during the training stage (e.g., excludes positions 500 and 800 for the varied group, and
one of the six locations for each of the constant groups). Table presents Mean absolute deviations
from the center of the target, and standard deviations in parenthesis.

Position Constant Varied

900 346.96(111.35) 289.62(110.07)

Finally, corresponding to the comparison of position 760 from Experiment 1, we compared the

test performance of the varied group against the constant group from only the positions that

the constant groups trained. Such positions were novel to the varied group (thus this analysis

omitted two constant groups that trained from positions 500 or 800 as those positions were not

novel to the varied group). Figure 7 displays the particular subset of comparisons utilized for this

analysis. Again, we standardized performance within each position before performing the analyses

on the aggregated data. In this case, the effect of condition did not reach statistical significance

F(1,149)=3.14, p=.079, 𝜂2𝐺 = .02. Table 4 provides descriptive statistics.
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Figure 7: A comparison of throwing location that are identical to those trained by the constant
participants (e.g., constant participants trained at position 900, tested from position 900), which
are also novel to the varied-trained participants (thus excluding positions 500 and 800). Error bars
indicate standard error of the mean.
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Table 4: Testing performance from the locations trained by constant participants and novel to
varied participants. Locations 500 and 800 are not included as these were trained by the varied
participants. Table presents Mean absolute deviation from the center of the target, and standard
deviations in parenthesis.

Position Constant Varied

400 108.85(50.63) 83.92(33.76)

625 204.75(84.66) 183.51(75.92)

675 235.75(81.15) 206.32(94.64)

900 323.5(130.9) 289.62(110.07)

Experiment 2 Discussion

The results of Experiment 2 largely conform to the findings of Experiment 1. Participants in

both varied and constant conditions improved at the task during the training phase. We did not

observe the common finding of training under varied conditions producing worse performance during

acquisition than training under constant conditions (Catalano & Kleiner, 1984; Wrisberg et al.,

1987), which has been suggested to relate to the subsequent benefits of varied training in retention

and generalization testing (Soderstrom & Bjork, 2015). However our finding of no difference in

training performance between constant and varied groups has been observed in previous work

(Chua et al., 2019; Moxley, 1979; Pigott & Shapiro, 1984).

In the testing phase, our varied group significantly outperformed the constant conditions in both a

general comparison, and in an analysis limited to novel throwing positions. The observed benefit

of varied over constant training echoes the findings of many previous visuomotor skill learning

studies that have continued to emerge since the introduction of Schmidt’s influential Schema Theory

(Catalano & Kleiner, 1984; Chua et al., 2019; Goodwin et al., 1998; McCracken & Stelmach, 1977;

Moxley, 1979; Newell & Shapiro, 1976; Pigott & Shapiro, 1984; Roller et al., 2001; Schmidt, 1975;

Willey & Liu, 2018b; Wrisberg et al., 1987; Wulf, 1991). We also join a much smaller set of

research to observe this pattern in a computerized task (Seow et al., 2019). One departure from

the experiment 1 findings concerns the pattern wherein the varied group outperformed the constant
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group even from the training position of the constant group, which was significant in experiment 1,

but did not reach significance in experiment 2. Although this pattern has been observed elsewhere

in the literature (Goode et al., 2008; Kerr & Booth, 1978), the overall evidence for this effect

appears to be far weaker than for the more general benefit of varied training in conditions novel to

all training groups.

Computational Model

Controlling for the similarity between training and testing. The primary goal of Experiment 2 was to

examine whether the benefits of variability would persist after accounting for individual differences

in the similarity between trained and tested throwing locations. To this end, we modelled each

throw as a two-dimensional point in the space of x and y velocities applied to the projectile at the

moment of release. For each participant, we took each individual training throw, and computed

the similarity between that throw and the entire population of throws within the solution space

for each of the 6 testing positions. We defined the solution space empirically as the set of all

combinations of x and y throw velocities that resulted in hitting the target. We then summed each

of the trial-level similarities to produce a single similarity for each testing position score relating

how the participant threw the ball during training and the solutions that would result in target

hits from each of the six testing positions – thus resulting in six separate similarity scores for each

participant. Figure 8 visualizes the solution space for each location and illustrates how different

combinations of x and y velocity result in successfully striking the target from different launching

positions. As illustrated in Figure 8, the solution throws represent just a small fraction of the entire

space of velocity combinations used by participants throughout the experiment.
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Figure 8: A) A visual representation of the combinations of throw parameters (x and y velocities
applied to the ball at launch), which resulted in target hits during the testing phase. This empirical
solution space was compiled from all of the participants in Experiment 2. B) shows the solution
space within the context of all of the throws made throughout the testing phase of the experiment.

For each individual trial, the Euclidean distance (Equation 1) was computed between the velocity

components (x and y) of that trial and the velocity components of each individual solution throw for

each of the 6 positions from which participants would be tested in the final phase of the study. The

P parameter in Equation 1 is set equal to 2, reflecting a Gaussian similarity gradient. Then, as per

an instance-based model of similarity (Logan, 2002; Nosofsky, 1992), these distances were multiplied

by a sensitivity parameter, c, and then exponentiated to yield a similarity value. The parameter

c controls the rate with which similarity-based generalization drops off as the Euclidean distance

between two throws in x- and y-velocity space increases. If c has a large value, then even a small

difference between two throws’ velocities greatly decreases the extent of generalization from one to
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the other. A small value for c produces broad generalization from one throw to another despite

relatively large differences in their velocities. The similarity values for each training individual

throw made by a given participant were then summed to yield a final similarity score, with a

separate score computed for each of the 6 testing positions. The final similarity score is construable

as index of how accurate the throws a participant made during the training phase would be for

each of the testing positions.

Equation 1:
𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑡𝑦𝐼 ,𝐽 = ∑

𝑖=𝐼
∑
𝑗=𝐽

(𝑒−𝑐 ⋅𝑑𝑝𝑖,𝑗 )

Equation 2:
𝑑𝑖,𝑗 = √(𝑥𝑇 𝑟𝑎𝑖𝑛𝑖 − 𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗 )2 + (𝑦𝑇 𝑟𝑎𝑖𝑛𝑖 − 𝑦𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗 )2

A simple linear regression revealed that these similarity scores were significantly predictive of per-

formance in the transfer stage, t =-15.88, p<.01, 𝑟2=.17, such that greater similarity between

training throws and solution spaces for each of the test locations resulted in better performance.

We then repeated the group comparisons above while including similarity as a covariate in the

model. Comparing the varied and constant groups in testing performance from all testing positions

yielded a significant effect of similarity, F(1, 205)=85.66, p<.001, 𝜂2𝐺 =.29, and also a significant

effect of condition (varied vs. constant), F(1, 205)=6.03, p=.015, 𝜂2𝐺 =.03. The group comparison

limited to only novel locations for the varied group pit against trained location for the constant

group resulted in a significant effect of similarity, F(1,148)=31.12, p<.001, 𝜂2𝐺 =.18 as well as for

condition F(1,148)=11.55, p<.001, 𝜂2𝐺 =.07. For all comparisons, the pattern of results was consis-

tent with the initial findings from Experiment 2, with the varied group still performing significantly

better than the constant group.

Fitting model parameters separately by group

To directly control for similarity in Experiment 2, we developed a model-based measure of the

similarity between training throws and testing conditions. This similarity measure was a signifi-

cant predictor of testing performance, e.g., participants whose training throws were more similar to

throws that resulted in target hits from the testing positions, tended to perform better during the

testing phase. Importantly, the similarity measure did not explain away the group-level benefits

of varied training, which remained significant in our linear model predicting testing performance
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after similarity was added to the model. However, previous research has suggested that partici-

pants may differ in their level of generalization as a function of prior experience, and that such

differences in generalization gradients can be captured by fitting the generalization parameter of

an instance-based model separately to each group (Hahn et al., 2005; Lamberts, 1994). Relatedly,

the influential Bayesian generalization model developed by Tenenbaum & Griffiths (2001) predicts

that the breadth of generalization will increase when a rational agent encounters a wider variety

of examples. Following these leads, we assume that in addition to learning the task itself, par-

ticipants are also adjusting how generalizable their experience should be. Varied versus constant

participants may be expected to learn to generalize their experience to different degrees. To accom-

modate this difference, the generalization parameter of the instance-based model (in the present

case, the c parameter) can be allowed to vary between the two groups to reflect the tendency of

learners to adaptively tune the extent of their generalization. One specific hypothesis is that people

adaptively set a value of c to fit the variability of their training experience (Nosofsky & Johansen,

2000; Sakamoto et al., 2006). If one’s training experience is relatively variable, as with the variable

training condition, then one might infer that future test situations will also be variable, in which

case a low value of c will allow better generalization because generalization will drop off slowly with

training-to-testing distance. Conversely, if one’s training experience has little variability, as found

in the constant training conditions, then one might adopt a high value of c so that generalization

falls off rapidly away from the trained positions.

To address this possibility, we compared the original instance-based model of similarity fit against

a modified model which separately fits the generalization parameter, c, to varied and constant

participants. To perform this parameter fitting, we used the optim function in R, and fit the model

to find the c value(s) that maximized the correlation between similarity and testing performance.

Both models generate distinct similarity values between training and testing locations. Much like

the analyses in Experiment 2, these similarity values are regressed against testing performance in

models of the form shown below. As was the case previously, testing performance is defined as the

mean absolute distance from the center of the target (with a separate score for each participant,

from each position).

Linear models 1 and 3 both show that similarity is a significant predictor of testing performance

(p<.01). Of greater interest is the difference between linear model 2, in which similarity is computed

from a single c value fit from all participants (Similarity1c), with linear model 4, which fits the c
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parameter separately between groups (Similarity2c). In linear model 2, the effect of training group

remains significant when controlling for Similarity1c (p<.01), with the varied group still performing

significantly better. However, in linear model 4 the addition of the Similarity2c predictor results

in the effect of training group becoming nonsignificant (p=.40), suggesting that the effect of varied

vs. constant training is accounted for by the Similarity2c predictor. Next, to further establish a

difference between the models, we performed nested model comparisons using ANOVA, to see if the

addition of the training group parameter led to a significant improvement in model performance.

In the first comparison, ANOVA(Linear Model 1, Linear Model 2), the addition of the training

group predictor significantly improved the performance of the model (F=22.07, p<.01). However,

in the second model comparison, ANOVA (Linear model 3, Linear Model 4) found no improvement

in model performance with the addition of the training group predictor (F=1.61, p=.20).

Finally, we sought to confirm that similarity values generated from the adjusted Similarity2c model

had more predictive power than those generated from the original Similarity1c model. Using the

BIC function in R, we compared BIC values between linear model 1 (BIC=14604.00) and linear

model 3 (BIC = 14587.64). The lower BIC value of model 3 suggests a modest advantage for

predicting performance using a similarity measure computed with two c values over similarity

computed with a single c value. When fit with separate c values, the best fitting c parameters for

the model consistently optimized such that the c value for the varied group (c=.00008) was smaller

in magnitude than the c value for the constant group(c= .00011). Recall that similarity decreases

as a Gaussian function of distance (equation 1 above), and a smaller value of c will result in a

more gradual drop-off in similarity as the distance between training throws and testing solutions

increases.

In summary, our modeling suggests that an instance-based model which assumes equivalent gen-

eralization gradients between constant and varied trained participants is unable to account for the

extent of benefits of varied over constant training observed at testing. The evidence for this in

the comparative model fits is that when a varied/constant dummy-coded variable for condition is

explicitly added to the model, the variable adds a significant contribution to the prediction of test

performance, with the variable condition yielding better performance than the constant conditions.

However, if the instance-based generalization model is modified to assume that the training groups

can differ in the steepness of their generalization gradient, by incorporating a separate generaliza-

tion parameter for each group, then the instance-based model can account for our experimental
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results without explicitly taking training group into account. Henceforth this model will be referred

to as the Instance-based Generalization with Adaptive Similarity (IGAS) model.

Project 1 General Discussion

Across two experiments, we found evidence in support of the benefits of variability hypothesis in a

simple, computerized projectile throwing task. Generalization was observed in both constant and

varied participants, in that both groups tended to perform better at novel positions in the testing

phase than did participants who started with those positions in the training phase. However,

varied trained participants consistently performed better than constant trained participants, in

terms of both the testing phase in general, and in a comparison that only included untrained

positions. We also found some evidence for the less commonly observed pattern wherein varied-

trained participants outperform constant-trained participants even from conditions identical to

the constant group training (Goode et al., 2008; Green et al., 1995; Kerr & Booth, 1978). In

Experiment 1 varied participants performed significantly better on this identity comparison. In

Experiment 2, the comparison was not significant initially, but became significant after controlling

for the similarity measure that incorporates only a single value for the steepness of similarity-based

generalization (c). Furthermore, we showed that the general pattern of results from Experiment 2

could be parsimoniously accommodated by an instance-based similarity model, but only with the

assumption that constant and varied participants generalize their training experience to different

degrees. Our results thus suggest that the benefits of variation cannot be explained by the varied-

trained participants simply covering a broader range of the task space. Rather, the modeling

suggests that varied participants also learn to adaptively tune their generalization function such that

throwing locations generalize more broadly to one another than they do in the constant condition.

A learning system could end up adopting a higher c value in the constant than variable training

conditions by monitoring the trial-by-trial variability of the training items. The c parameter would

be adapted downwards when adjacent training items are dissimilar to each other and adapted

upwards when adjacent training items are the same. In this fashion, contextually appropriate c

values could be empirically learned. This learning procedure would capture the insight that if a

situation has a high amount variability, then the learner should be predisposed toward thinking that

subsequent test items will also show considerable variability, in which case generalization gradients

should be broad, as is achieved by low values for c.
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Also of interest is whether the IGAS model can predict the pattern of results wherein the varied

condition outperforms the constant condition even from the position on which the constant condi-

tion trained. Although our models were fit using all of the Experiment 2 training and testing data,

not just that of the identity comparisons, in Figure 9 we demonstrate how a simplified version of

the IGAS model could in principle produce such a pattern. In addition to the assumption of differ-

ential generalization between varied and constant conditions, our simplified model makes explicit

an assumption that is incorporated into the full IGAS model – namely that even when being tested

from a position identical to that which was trained, there are always some psychological contextual

differences between training and testing throws, resulting in a non-zero dissimilarity.
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Figure 9: A simple model depicting the necessity of both of two separately fit generalization
parameters, c, and a positive distance between training and testing contexts, in order for an instance
model to predict a pattern of varied training from stimuli 400 and 800 outperforming constant
training from position 600 at a test position of 600. For the top left panel, in which the generalization
model assumes a single c value (-.008) for both varied and constant conditions, and identical
contexts across training and testing, the equation which generates the varied condition is - Amount
of Generalization = 𝑒(𝑐⋅|𝑥−800|) + 𝑒(𝑐⋅|𝑥−400|), whereas the constant group generalization is generated
from 2 ⋅ 𝑒(𝑐⋅|𝑥−600|). For the top right panel, the c constants in the original equations are different for
the 2 conditions, with 𝑐 = −.002 for the varied condition, and 𝑐 = −.008 for the constant condition.
The bottom two panels are generated from identical equations to those immediately above, except
for the addition of extra distance (100 units) to reflect the assumption of some change in context
between training and testing conditions. Thus, the generalization model for the varied condition in
the bottom-right panel is of the form - Amount of Generalization = 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−800|) + 𝑒(𝑐𝑣𝑎𝑟 𝑖𝑒𝑑 ⋅|𝑥−400|) .
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As mentioned above, the idea that learners flexibly adjust their generalization gradient based on

prior experience does have precedent in the domains of category learning (Aha & Goldstone, 1992;

Briscoe & Feldman, 2011; Hahn et al., 2005; Lamberts, 1994; Op de Beeck et al., 2008), and

sensorimotor adaptation (Marongelli & Thoroughman, 2013; Taylor & Ivry, 2013; Thoroughman

& Taylor, 2005). Lamberts (1994) showed that a simple manipulation of background knowledge

during a categorization test resulted in participants generalizing their training experience more or

less broadly, and moreover that such a pattern could be captured by allowing the generalization

parameter of an instance-based similarity model to be fit separately between conditions. The flexible

generalization parameter has also successfully accounted for generalization behavior in cases where

participants have been trained on categories that differ in their relative variability (Hahn et al.,

2005; Sakamoto et al., 2006). However, to the best of our knowledge, IGAS is the first instance-

based similarity model that has been put forward to account for the effect of varied training in a

visuomotor skill task. Although IGAS was inspired by work in the domain of category learning,

its success in a distinct domain may not be surprising in light of the numerous prior observations

that at least certain aspects of learning and generalization may operate under common principles

across different tasks and domains (Censor et al., 2012; Hills et al., 2010; Jamieson et al., 2022;

Law & Gold, 2010; Roark et al., 2021; Rosenbaum et al., 2001; Vigo et al., 2018; Wall et al., 2021;

Wu et al., 2020; J. Yang et al., 2020).

Our modelling approach does differ from category learning implementations of instance-based mod-

els in several ways. One such difference is the nature of the training instances that are assumed to

be stored. In category learning studies, instances are represented as points in a multidimensional

space of all of the attributes that define a category item (e.g., size/color/shape). Rather than

defining instances in terms of what stimuli learners experience, our approach assumes that stored,

motor instances reflect how they act, in terms of the velocity applied to the ball on each throw.

An advantage of many motor learning tasks is the relative ease with which task execution variables

can be directly measured (e.g., movement force, velocity, angle, posture) in addition to the decision

and response time measures that typically exhaust the data generated from more classical cognitive

tasks. Of course, whether learners actually are storing each individual motor instance is a funda-

mental question beyond the scope of the current work – though as described in the introduction

there is some evidence in support of this idea (Chamberlin & Magill, 1992a; Crump & Logan, 2010;

Hommel, 1998; Meigh et al., 2018; Poldrack et al., 1999). A particularly noteworthy instance-based

model of sensory-motor behavior is the Knowledge II model of Rosenbaum and colleagues (R. G.
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Cohen & Rosenbaum, 2004; Rosenbaum et al., 1995). Knowledge II explicitly defines instances as

postures (joint combinations), and is thus far more detailed than IGAS in regards to the contents of

stored instances. Knowledge II also differs from IGAS in that learning is accounted for by both the

retrieval of stored postures, and the generation of novel postures via the modification of retrieved

postures. A promising avenue for future research would be to combine the adaptive similarity

mechanism of IGAS with the novel instance generation mechanisms of Knowledge II.

Our findings also have some conceptual overlap with an earlier study on the effects of varied training

in a coincident timing task (Catalano & Kleiner, 1984). In this task, participants observe a series

of lamps lighting up consecutively, and attempt to time a button press with the onset of the final

lamp. The design consisted of four separate constant groups, each training from a single lighting

velocity, and a single varied group training with all four of the lighting velocities used by the

individual constant groups. Participants were then split into four separate testing conditions, each

of which were tested from a single novel lighting velocity of varying distance from the training

conditions. The result of primary interest was that all participants performed worse as the distance

between training and testing velocity increased – a typical generalization decrement. However,

varied participants showed less of a decrement than did constant participants. The authors take

this result as evidence that varied training results in a less-steep generalization gradient than does

constant training. Although the experimental conclusions of Catalano and Kleiner are similar to

our own, our work is novel in that we account for our results with a cognitive model, and without

assuming the formation of a schema. Additionally, the way in which Catalano and Kleiner collapse

their separate constant groups together may result in similarity confounds between varied and

constant conditions that leaves their study open to methodological criticisms, especially in light of

related work which demonstrated that the extent to which varied training may be beneficial can

depend on whether the constant group they are compared against trained from similar conditions

to those later tested (Wrisberg et al., 1987). Our study alleviates such concerns by explicitly

controlling for similarity.

Limitations

A limitation of this study concerns the ordering of the testing/transfer trials at the conclusion of

both experiments. Participants were tested from each separate position (4 in Experiment 1, 6 in

Experiment 2) in a random, intermixed order. Because the varied group was trained from two
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positions that were also randomly ordered, they may have benefited from experience with this type

of sequencing, whereas the constant groups had no experience with switching between positions

trial to trial. This concern is somewhat ameliorated by the fact that the testing phase performance

of the constant groups from their trained position was not significantly worse than their level of

performance at the end of the training phase, suggesting that they were not harmed by random

ordering of positions during testing. It should also be noted that the computerized task utilized

in the present work is relatively simple compared to many of the real-world tasks utilized in prior

research. It is thus conceivable that the effect of variability in more complex tasks is distinct from

the process put forward in the present work. An important challenge for future work will be to

assess the extent to which IGAS can account for generalization in relatively complex tasks with far

more degrees of freedom.

It is common for psychological process models of categorization learning to use an approach such

as multidimensional scaling so as to transform the stimuli from the physical dimensions used in

the particular task into the psychological dimensions more reflective of the actual human repre-

sentations (Nosofsky, 1992; Shepard, 1987). Such scaling typically entails having participants rate

the similarity between individual items and using these similarity judgements to then compute the

psychological distances between stimuli, which can then be fed into a subsequent model. In the

present investigation, there was no such way to scale the x and y velocity components in terms of

the psychological similarity, and thus our modelling does rely on the assumption that the psycho-

logical distances between the different throwing positions are proportional to absolute distances in

the metric space of the task (e.g., the relative distance between positions 400 and 500 is equivalent

to that between 800 and 900). However, an advantage of our approach is that we are measuring

similarity in terms of how participants behave (applying a velocity to the ball), rather than the

metric features of the task stimuli.

Conclusion

Our experiments demonstrate a reliable benefit of varied training in a simple projectile launching

task. Such results were accounted for by an instance-based model that assumes that varied training

results in the computation of a broader similarity-based generalization gradient. Instance-based

models augmented with this assumption may be a valuable approach towards better understanding

skill generalization and transfer.
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Project 2

Introduction

A longstanding issue across both science and instruction has been to understand how various aspects

of an educational curriculum or training program influence learning acquisition and generalization.

One such aspect, which has received a great deal of research attention, is the variability of examples

experienced during training (Raviv et al., 2022). The influence of training variation has been studied

in numerous domains, including category learning (A. L. Cohen et al., 2001; Posner & Keele, 1968),

visuomotor learning (Berniker et al., 2014; Schmidt, 1975), language learning (Perry et al., 2010),

and education (Braithwaite & Goldstone, 2015; Guo et al., 2014). The pattern of results is complex,

with numerous studies finding both beneficial (Braun et al., 2009; Catalano & Kleiner, 1984; Roller

et al., 2001), as well as null or negative effects (Brekelmans et al., 2022; Hu & Nosofsky, 2024; Van

Rossum, 1990). The present study seeks to contribute to the large body of existing research by

examining the influence of variability in visuomotor function learning - a domain in which it has

been relatively under-studied.

Function Learning and Extrapolation

The study of human function learning investigates how people learn relationships between con-

tinuous input and output values. Function learning is studied both in tasks where individuals

are exposed to a sequence of input/output pairs (DeLosh et al., 1997; McDaniel et al., 2013), or

situations where observers are presented with an incomplete scatterplot or line graph and make

predictions about regions of the plot that don’t contain data (Ciccione & Dehaene, 2021; Courrieu,

2012; Said & Fischer, 2021; Schulz et al., 2020).

Carroll (1963) conducted the earliest work on function learning. Input stimuli and output responses

were both lines of varying length. The correct output response was related to the length of the

input line by a linear, quadratic, or random function. Participants in the linear and quadratic

performed above chance levels during extrapolation testing, with those in the linear condition

performing the best overall. Carroll argued that these results were best explained by a ruled based

model wherein learners form an abstract representation of the underlying function. Subsequent

work by Brehmer (1974),testing a wider array of functional forms, provided further evidence for

superior extrapolation in tasks with linear functions. Brehmer argued that individuals start out
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with an assumption of a linear function, but given sufficient error will progressively test alternative

hypothesis with polynomials of greater degree. Koh &Meyer (1991) employed a visuomotor function

learning task, wherein participants were trained on examples from an unknown function relating

the length of an input line to the duration of a response (time between keystrokes). In this domain,

participants performed best when the relation between line length and response duration was

determined by a power, as opposed to linear function. Koh & Meyer developed the log-polynomial

adaptive-regression model to account for their results.

The first significant challenge to the rule-based accounts of function learning was put forth by

DeLosh et al. (1997) . In their task, participants learned to associate stimulus magnitudes with

response magnitudes that were related via either linear, exponential, or quadratic function. Partic-

ipants approached ceiling performance by the end of training in each function condition, and were

able to correctly respond in interpolation testing trials. All three conditions demonstrated some

capacity for extrapolation, however participants in the linear condition tended to underestimate the

true function, while exponential and quadratic participants reliably overestimated the true function

on extrapolation trials. Extrapolation and interpolation performance are depicted in Figure 10.

The authors evaluated both of the rule-based models introduced in earlier research (with some

modifications enabling trial-by-trial learning). The polynomial hypothesis testing model (Brehmer,

1974; Carroll, 1963) tended to mimic the true function closely in extrapolation, and thus offered

a poor account of the human data. The log-polynomial adaptive regression model (Koh & Meyer,

1991) was able to mimic some of the systematic deviations produced by human subjects, but also

predicted overestimation in cases where underestimation occurred.

The authors also introduced two new function-learning models. The Associative Learning Model

(ALM) and the extrapolation-association model (EXAM). ALM is a two layer connectionist model

adapted from the ALCOVE model in the category learning literature (Kruschke, 1992). ALM

belongs to the general class of radial-basis function neural networks, and can be considered a

similarity-based model in the sense that the nodes in the input layer of the network are activated as a

function of distance. The EXAM model retains the same similarity based activation and associative

learning mechanisms as ALM, while being augmented with a linear rule response mechanism.

When presented with novel stimuli, EXAM will retrieve the most similar input-output examples

encountered during training, and from those examples compute a local slope. ALM was able

to provide a good account of participant training and interpolation data in all three function
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conditions, however it was unable to extrapolate. EXAM, on the other hand, was able to reproduce

both the extrapolation underestimation, as well as the quadratic and exponential overestimation

patterns exhibited by the human participants. Subsequent research identified some limitations in

EXAM’s ability to account for cases where human participants learn and extrapolate sinusoidal

function Bott & Heit (2004) or to scenarios where different functions apply to different regions of

the input space Kalish et al. (2004), though EXAM has been shown to provide a good account of

human learning and extrapolation in tasks with bi-linear, V shaped input spaces Mcdaniel et al.

(2009).

Variability and Function Learning

The influence of variability on function learning tasks has received relatively little attention. The

study by DeLosh et al. (1997) (described in detail above) did include a variability manipulation

(referred to as density in their paper), wherein participants were trained with either either 8, 20, or

50 unique input-output pairs, with the total number of training trials held constant. They found

a minimal influence of variability on training performance, and no difference between groups in in-

terpolation or extrapolation, with all three variability conditions displaying accurate interpolation,

and linearly biased extrapolation that was well accounted for by the EXAM model.

In the domain of visuomotor learning, van Dam & Ernst (2015) employed a task which required

participants to learn a linear function between the spikiness of shape stimuli and the correct hori-

zontal position to make a rapid pointing response. The shapes ranged from very spiky to completely

circular at the extreme ends of the space. Participants trained with intermediate shapes from a

lower variation (2 shapes) or higher variation (5 shapes) condition, with the 2 items of the lower

varied condition matching the items used on the extreme ends of the higher variation training space.

Learning was significantly slower in the higher variation group. However, the two conditions did

not differ when tested with novel shapes, with both groups producing extrapolation responses of

comparable magnitudes to the most similar training item, rather than in accordance with the true

linear function. The authors accounted for both learning and extrapolation performance with a

Bayesian learning model. Similar to ALM, the Bayesian model assumes that generalization occurs

as a Gaussian function of the distance between stimuli. However unlike ALM, the Bayesian learning

model utilizes more elaborate probabilistic stimulus representations, with a separate Kalman Filter

for each shape stimulus.
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Figure 10: Generalization reproduced patterns from DeLosh et al. (1997) Figure 3. Stimulii that
fall within the dashed lines are interpolations of the training examples.

Overview Of Present Study

The present study investigates the influence of training variability on learning, generalization, and

extrapolation in a uni-dimensional visuomotor function learning task. To the best of our knowledge,

this research is the first to employ the classic constant vs. varied training manipulation, commonly

used in the literature on the benefits of variability, in the context of a uni-dimensional function

learning task. Across three experiments, we compare constant and varied training conditions in

terms of learning performance, extrapolation accuracy, and the ability to reliably discriminate

between stimuli.

To account for the empirical results, we will apply a series of computational models, including the

Associative Learning Model (ALM) and the Extrapolation-Association Model (EXAM). Notably,

this study is the first to employ approximate Bayesian computation (ABC) to fit these models to

individual subject data, enabling us to thoroughly investigate the full range of posterior predictions

of each model, and to examine the ability of these influential models of function learning to account

for both the group level and individual level data.

Experiment 1

Methods

Participants A total of 156 participants were recruited from the Indiana University Introductory

Psychology Course. Participants were randomly assigned to one of two training conditions: varied
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training or constant training.

Task. The “Hit The Wall” (HTW) visuomotor extrapolation task task was programmed in

Javascript, making heavy use of the phaser.io game library. The HTW task involved launching a

projectile such that it would strike the “wall” at target speed indicated at the top of the screen

(see Figure 11). The target velocities were given as a range, or band, of acceptable velocity values

(e.g., band 800-1000). During the training stage, participants received feedback indicating whether

they had hit the wall within the target velocity band, or how many units their throw was above or

below from the target band. Participants were instructed that only the x velocity component of

the ball was relevant to the task. The y velocity, or the location at which the ball struck the wall,

had no influence on the task feedback.

Figure 11: The Hit the wall task. Participants launch the blue ball to hit the red wall at the target
velocity band indicated at the top of the screen. The ball must be released from within the orange
square - but the location of release, and the location at which the ball strikes the wall are both
irrelevant to the task feedback.

Procedure. All participants completed the task online. Participants were provided with a description

of the experiment and indicated informed consent. Figure 12 illustrates the general procedure.

Participants completed a total of 90 trials during the training stage. In the varied training condition,

participants encountered three velocity bands (800-1000, 1000-1200, and 1200-1400). Participants

in the constant training condition trained on only one velocity band (800-1000) - the closest band
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to what would be the novel extrapolation bands in the testing stage.

Following the training stage, participants proceeded immediately to the testing stage. Participants

were tested from all six velocity bands, in two separate stages. In the novel extrapolation testing

stage, participants completed “no-feedback” testing from three novel extrapolation bands (100-

300, 350-550, and 600-800), with each band consisting of 15 trials. Participants were also tested

from the three velocity bands that were trained by the varied condition (800-1000, 1000-1200, and

1200-1400). In the constant training condition, two of these bands were novel, while in the varied

training condition, all three bands were encountered during training. The order in which par-

ticipants completed the novel-extrapolation and testing-from-3-varied bands was counterbalanced

across participants. A final training stage presented participants with “feedback” testing for each

of the three extrapolation bands (100-300, 350-550, and 600-800).

Figure 12: Experiment 1 Design. Constant and Varied participants complete different training
conditions.

Analyses Strategy

All data processing and statistical analyses were performed in R version 4.32 (Team, 2020). To

assess differences between groups, we used Bayesian Mixed Effects Regression. Model fitting was

performed with the brms package in R (Bürkner, 2017), and descriptive stats and tables were

extracted with the BayestestR package (Makowski et al., 2019). Mixed effects regression enables us

to take advantage of partial pooling, simultaneously estimating parameters at the individual and

group level. Our use of Bayesian, rather than frequentist methods allows us to directly quantify

the uncertainty in our parameter estimates, as well as avoiding convergence issues common to the

frequentist analogues of our mixed models.

Each model was set to run with 4 chains, 5000 iterations per chain, with the first 2500 discarded as
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warmup chains. Rhat values were within an acceptable range, with values <=1.02 (see appendix

for diagnostic plots). We used uninformative priors for the fixed effects of the model (condition and

velocity band), and weakly informative Student T distributions for for the random effects. For each

model, we report 1) the mean values of the posterior distribution for the parameters of interest, 2)

the lower and upper credible intervals (CrI), and the probability of direction value (pd).

Table 5: Statistical Model Specifications. The specifications for the Bayesian regression models
used in the analyses of each of the 3 experiments. Comparisons of accuracy use abosulte deviation
as the dependent variable, while comparisons of discrimination use the raw velocities produced by
participants as the dependent variable.

Group Comparison Code Data

End of Training

Accuracy

brm(Abs. Deviation ~ condit) Final Training

Block

Test Accuracy brm(Abs. Deviation ~ condit * bandType +

(1|id) + (1|bandInt)

All Testing trials

Band Discrimination brm(vx ~ condit * band +(1 + bandInt|id) All Testing Trials

In each experiment we compare varied and constant conditions in terms of 1) accuracy in the final

training block; 2) testing accuracy as a function of band type (trained vs. extrapolation bands);

3) extent of discrimination between all six testing bands. We quantified accuracy as the absolute

deviation between the response velocity and the nearest boundary of the target band. Thus, when

the target band was velocity 600-800, throws of 400, 650, and 900 would result in deviation values

of 200, 0, and 100, respectively. The degree of discrimination between bands was index by fitting a

linear model predicting the response velocity as a function of the target velocity. Participants who

reliably discriminated between velocity bands tended to haves slope values ~1, while participants

who made throws irrespective of the current target band would have slopes ~0.
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Figure 13: Experiment 1 Training Stage. Deviations from target band across training blocks. Lower
values represent greater accuracy.

Table 6: Experiment 1 - End of training performance. Comparing final training block accu-
racy in band common to both groups. The Intercept represents the average of the baseline condition
(constant training), and the conditVaried coefficient reflects the difference between the constant
and varied groups. A larger positive estimates indicates a greater deviation (lower accuracy) for
the varied group. CrI values indicate 95% credible intervals. pd is the probability of direction (the
% of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 106.34 95.46 117.25 1

conditVaried 79.64 57.92 101.63 1

Training. Figure 13 displays the average deviations across training blocks for the varied group,

which trained on three velocity bands, and the constant group, which trained on one velocity band.

To compare the training conditions at the end of training, we analyzed performance on the 800-

1000 velocity band, which both groups trained on. The full model results are shown in Table 1.
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The varied group had a significantly greater deviation than the constant group in the final training

block, (𝛽 = 79.64, 95% CrI [57.92, 101.63]; pd = 100%).

Table 7: Experiment 1 testing accuracy. Main effects of condition and band type (training
vs. extrapolation bands), and the interaction between the two factors. The Intercept represents the
baseline condition (constant training & trained bands). Larger coefficients indicate larger deviations
from the baselines - and a positive interaction coefficient indicates disproporionate deviation for the
varied condition on the extrapolation bands. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 152.55 70.63 229.85 1.0

conditVaried 39.00 -21.10 100.81 0.9

bandTypeExtrapolation 71.51 33.24 109.60 1.0

conditVaried:bandTypeExtrapolation 66.46 32.76 99.36 1.0

Testing. To compare accuracy between groups in the testing stage, we fit a Bayesian mixed ef-

fects model predicting deviation from the target band as a function of training condition (varied

vs. constant) and band type (trained vs. extrapolation), with random intercepts for participants

and bands. The model results are shown in Table 7. The main effect of training condition was

not significant (𝛽 = 39, 95% CrI [-21.1, 100.81]; pd = 89.93%). The extrapolation testing items

had a significantly greater deviation than the training bands (𝛽 = 71.51, 95% CrI [33.24, 109.6];

pd = 99.99%). Most importantly, the interaction between training condition and band type was

significant (𝛽 = 66.46, 95% CrI [32.76, 99.36]; pd = 99.99%), As shown in Figure 14, the varied

group had disproportionately larger deviations compared to the constant group in the extrapolation

bands.
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Figure 14: Experiment 1 Testing Accuracy. A) Empricial Deviations from target band during
testing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent
95% credible intervals.

Table 8: Experiment 1 Testing Discrimination. Bayesian Mixed Model Predicting velocity as
a function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the Band
term reflect a larger slope, or greater sensitivity/discrimination. The interaction between condit
and Band indicates the difference between constant and varied slopes. CrI values indicate 95%
credible intervals. pd is the probability of direction (the % of the posterior on the same side of 0
as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 408.55 327.00 490.61 1.00

conditVaried 164.05 45.50 278.85 1.00

Band 0.71 0.62 0.80 1.00

condit*Band -0.14 -0.26 -0.01 0.98
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Finally, to assess the ability of both conditions to discriminate between velocity bands, we fit

a model predicting velocity as a function of training condition and velocity band, with random

intercepts and random slopes for each participant. See Table 8 for the full model results. The

estimated coefficient for training condition (𝛽 = 164.05, 95% CrI [45.5, 278.85], pd = 99.61%)

suggests that the varied group tends to produce harder throws than the constant group, though is

not in and of itself useful for assessing discrimination. Most relevant to the issue of discrimination

is the coefficient on the Band predictor (𝛽 = 0.71 95% CrI [0.62, 0.8], pd = 100%). Although the

median slope does fall underneath the ideal of value of 1, the fact that the 95% credible interval

does not contain 0 provides strong evidence that participants exhibited some discrimination between

bands. The significant negative estimate for the interaction between slope and condition (𝛽 = -0.14,

95% CrI [-0.26, -0.01], pd = 98.39%), suggests that the discrimination was modulated by training

condition, with the varied participants showing less sensitivity between bands than the constant

condition (see Figure 15 and Figure 16).
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Figure 15: Experiment 1. Empirical distribution of velocities producing in testing stage. Translu-
cent bands with dashed lines indicate the correct range for each velocity band.
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Figure 16: Experiment 1 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well participants
discriminated between velocity bands. B) The distribution of slope coefficients for each condition.
Larger slopes indicates better discrimination. C) Individual participant slopes. Error bars represent
95% HDI.

Experiment 1 Summary

In Experiment 1, we investigated how variability in training influenced participants’ ability learn

and extrapolate in a visuomotor task. Our findings that training with variable conditions resulted

in lower final training performance are consistent with much of the prior research on the influence of

training variability (Raviv et al., 2022; Soderstrom & Bjork, 2015), and is particularly unsurprising

in the present work, given that the constant group received three times the amount of training on

the velocity band common to the two conditions.

More importantly, the varied training group exhibited significantly larger deviations from the target

velocity bands during the testing phase, particularly for the extrapolation bands that were not
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encountered by either condition during training.

Experiment 2

Methods & Procedure

The task and procedure of Experiment 2 was identical to Experiment 1, with the exception that the

training and testing bands were reversed (see Figure 17). The Varied group trained on bands 100-

300, 350-550, 600-800, and the constant group trained on band 600-800. Both groups were tested

from all six bands. A total of 110 participants completed the experiment (Varied: 55, Constant:

55).

Figure 17: Experiment 2 Design. Constant and Varied participants complete different training
conditions. The training and testing bands are the reverse of Experiment 1.
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Figure 18: Experiment 2 Training Stage. Deviations from target band across training blocks. Lower
values represent greater accuracy.

Table 9: Experiment 2 - End of training performance. The Intercept represents the average
of the baseline condition (constant training), and the conditVaried coefficient reflects the difference
between the constant and varied groups. A larger positive coefficient indicates a greater devia-
tion (lower accuracy) for the varied group. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 91.01 80.67 101.26 1

conditVaried 36.15 16.35 55.67 1

Training. Figure 18 presents the deviations across training blocks for both constant and varied

training groups. We again compared training performance on the band common to both groups

(600-800). The full model results are shown in Table 1. The varied group had a significantly greater

deviation than the constant group in the final training block, ( 𝛽 = 36.15, 95% CrI [16.35, 55.67];

pd = 99.95%).
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Table 10: Experiment 2 testing accuracy. Main effects of condition and band type (training
vs. extrapolation), and the interaction between the two factors. The Intercept represents the
baseline condition (constant training & trained bands). Larger coefficients indicate larger deviations
from the baselines - and a positive interaction coefficient indicates disproporionate deviation for the
varied condition on the extrapolation bands. CrI values indicate 95% credible intervals. pd is the
probability of direction (the % of the posterior on the same side of 0 as the coefficient estimate).

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 190.91 125.03 259.31 1.00

conditVaried -20.58 -72.94 33.08 0.78

bandTypeExtrapolation 38.09 -6.94 83.63 0.95

conditVaried:bandTypeExtrapolation 82.00 41.89 121.31 1.00

Testing Accuracy. The analysis of testing accuracy examined deviations from the target band as

influenced by training condition (Varied vs. Constant) and band type (training vs. extrapolation

bands). The results, summarized in Table 10, reveal no significant main effect of training condition

(𝛽 = -20.58, 95% CrI [-72.94, 33.08]; pd = 77.81%). However, the interaction between training

condition and band type was significant (𝛽 = 82, 95% CrI [41.89, 121.31]; pd = 100%), with the

varied group showing disproportionately larger deviations compared to the constant group on the

extrapolation bands (see Figure 19).
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Figure 19: Experiment 2 Testing Accuracy. A) Empricial Deviations from target band during
testing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Error bars represent
95% credible intervals.

Table 11: Experiment 2 Testing Discrimination. Bayesian Mixed Model Predicting velocity
as a function of condition (Constant vs. Varied) and Velocity Band. Larger coefficients for the
Band term reflect a larger slope, or greater sensitivity/discrimination. The interaction between
condit and Band indicates the difference between constant and varied slopes. CrI values indicate
95% credible intervals. pd is the probability of direction (the % of the posterior on the same side
of 0 as the coefficient estimate)

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 362.64 274.85 450.02 1.00

conditVaried -8.56 -133.97 113.98 0.55

Band 0.71 0.58 0.84 1.00

condit*Band -0.06 -0.24 0.13 0.73

Testing Discrimination. Finally, to assess the ability of both conditions to discriminate between

velocity bands, we fit a model predicting velocity as a function of training condition and velocity
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band, with random intercepts and random slopes for each participant. The full model results are

shown in Table 11. The overall slope on target velocity band predictor was significantly positive,

(𝛽 = 0.71, 95% CrI [0.58, 0.84]; pd= 100%), indicating that participants exhibited discrimination

between bands. The interaction between slope and condition was not significant, (𝛽 = -0.06, 95%

CrI [-0.24, 0.13]; pd= 72.67%), suggesting that the two conditions did not differ in their ability to

discriminate between bands (see Figure 20 and Figure 21).
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Figure 20: Experiment 2. Empirical distribution of velocities produced in the testing stage. Translu-
cent bands with dash lines indicate the correct range for each velocity band.
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Figure 21: Experiment 2 Discrimination. A) Conditional effect of training condition and Band.
Ribbons indicate 95% HDI. The steepness of the lines serves as an indicator of how well participants
discriminated between velocity bands. B) The distribution of slope coefficients for each condition.
Larger slopes indicates better discrimination. C) Individual participant slopes. Error bars represent
95% HDI.

Experiment 2 Summary

Experiment 2 extended the findings of Experiment 1 by examining the effects of training variability

on extrapolation performance in a visuomotor function learning task, but with reversed training

and testing bands. Similar to Experiment 1, the Varied group exhibited poorer performance during

training and testing. However unlike experiment 1, the Varied group did not show a significant

difference in discrimination between bands.

70



Experiment 3

Methods & Procedure

The major adjustment of Experiment 3 is for participants to receive ordinal feedback during train-

ing, in contrast to the continuous feedback of the prior experiments. After each training throw,

participants are informed whether a throw was too soft, too hard, or correct (i.e. within the target

velocity range). All other aspects of the task and design are identical to Experiments 1 and 2. We

utilized the order of training and testing bands from both of the prior experiments, thus assigning

participants to both an order condition (Original or Reverse) and a training condition (Constant

or Varied). Participants were once again recruited from the online Indiana University Introductory

Psychology Course pool. Following exclusions, 195 participants were included in the final analysis,

n=51 in the Constant-Original condition, n=59 in the Constant-Reverse condition, n=39 in the

Varied-Original condition, and n=46 in the Varied-Reverse condition.

Results

Table 12: Experiment 3 - End of training performance. The Intercept represents the average
of the baseline condition (constant training & original band order), the conditVaried coefficient
reflects the difference between the constant and varied groups, and the bandOrderReverse coefficient
reflects the difference between original and reverse order. A larger positive coefficient indicates a
greater deviation (lower accuracy) for the varied group. The negative value for the interaction
between condit and bandOrder indicates that varied condition with reverse order had significantly
lower deviations than the varied condition with the original band order

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 121.86 109.24 134.60 1.00

conditVaried 64.93 36.99 90.80 1.00

bandOrderReverse 1.11 -16.02 18.16 0.55

conditVaried:bandOrderReverse -77.02 -114.16 -39.61 1.00

Training. Figure 22 displays the average deviations from the target band across training blocks,

and Table 12 shows the results of the Bayesian regression model predicting the deviation from the

common band at the end of training (600-800 for reversed order, and 800-1000 for original order

conditions). The main effect of training condition is significant, with the varied condition showing
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larger deviations ( 𝛽 = 64.93, 95% CrI [36.99, 90.8]; pd = 100%). The main effect of band order

is not significant 𝛽 = 1.11, 95% CrI [-16.02, 18.16]; pd = 55.4%, however the interaction between

training condition and band order is significant, with the varied condition showing greater accuracy

in the reverse order condition ( 𝛽 = -77.02, 95% CrI [-114.16, -39.61]; pd = 100%).
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Figure 22: Experiment 3 training. Deviations from target band during training. Shown separately
for groups trained with the orginal order (used in E1) and reverse order (used in E2).

Table 13: Experiment 3 testing accuracy. Main effects of condition and band type (training
vs. extrapolation), and the interaction between the two factors. The Intercept represents the base-
line condition, (constant training, trained bands & original order), and the remaining coefficients
reflect the deviation from that baseline. Positive coefficients thus represent worse performance
relative to the baseline, - and a positive interaction coefficient indicates disproportionate deviation
for the varied condition or reverse order condition.

Term Estimate

95% CrI

Lower

95% CrI

Upper pd

Intercept 288.65 199.45 374.07 1.00

conditVaried -40.19 -104.68 23.13 0.89

bandTypeExtrapolation -23.35 -57.28 10.35 0.92

bandOrderReverse -73.72 -136.69 -11.07 0.99

conditVaried:bandTypeExtrapolation 52.66 14.16 90.23 1.00

conditVaried:bandOrderReverse -37.48 -123.28 49.37 0.80
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Term Estimate

95% CrI

Lower

95% CrI

Upper pd

bandTypeExtrapolation:bandOrderReverse 80.69 30.01 130.93 1.00

conditVaried:bandTypeExtrapolation:bandOrder 30.42 -21.00 81.65 0.87

Testing Accuracy. Table 13 presents the results of the Bayesian mixed efects model predicting

absolute deviation from the target band during the testing stage. There was no significant main

effect of training condition,𝛽 = -40.19, 95% CrI [-104.68, 23.13]; pd = 89.31%, or band type,𝛽 =

-23.35, 95% CrI [-57.28, 10.35]; pd = 91.52%. However the effect of band order was significant,

with the reverse order condition showing lower deviations, 𝛽 = -73.72, 95% CrI [-136.69, -11.07];

pd = 98.89%. The interaction between training condition and band type was also significant 𝛽 =

52.66, 95% CrI [14.16, 90.23]; pd = 99.59%, with the varied condition showing disproprionately

large deviations on the extrapolation bands compared to the constant group. There was also a

significant interaction between band type and band order, 𝛽 = 80.69, 95% CrI [30.01, 130.93]; pd =

99.89%, such that the reverse order condition showed larger deviations on the extrapolation bands.

No other interactions were significant.
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Figure 23: Experiment 3 Testing Accuracy. A) Empricial Deviations from target band during
testing without feedback stage. B) Conditional effect of condition (Constant vs. Varied) and testing
band type (trained bands vs. novel extrapolation bands) on testing accuracy. Shown separately
for groups trained with the orginal order (used in E1) and reverse order (used in E2). Error bars
represent 95% credible intervals.

Table 14: Experiment 3 testing discrimination. Bayesian Mixed Model Predicting Vx as a
function of condition (Constant vs. Varied) and Velocity Band. The Intercept represents the base-
line condition (constant training & original order), and the Band coefficient represents the slope
for the baseline condition. The interaction terms which include condit and Band (e.g., condit-
Varied:Band & conditVaried:bandOrderReverse:band) respectively indicate the how the slopes of
the varied-original condition differed from the baseline condition, and how varied-reverse condition
differed from the varied-original condition

Term Estimate 95% CrI Lower 95% CrI Upper pd

Intercept 601.83 504.75 699.42 1.00

conditVaried 12.18 -134.94 162.78 0.56

bandOrderReverse 13.03 -123.89 144.67 0.58
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Term Estimate 95% CrI Lower 95% CrI Upper pd

Band 0.49 0.36 0.62 1.00

conditVaried:bandOrderReverse -338.15 -541.44 -132.58 1.00

conditVaried:Band -0.04 -0.23 0.15 0.67

bandOrderReverse:band -0.10 -0.27 0.08 0.86

conditVaried:bandOrderReverse:band 0.42 0.17 0.70 1.00

Testing Discrimination. The full results of the discrimination model are presented in Table 13.

For the purposes of assessing group differences in discrimination, only the coefficients including

the band variable are of interest. The baseline effect of band represents the slope cofficient for

the constant training - original order condition, this effect was significant 𝛽 = 0.49, 95% CrI [0.36,

0.62]; pd = 100%. Neither of the two way interactions reached significance, 𝛽 = -0.04, 95% CrI

[-0.23, 0.15]; pd = 66.63%, 𝛽 = -0.1, 95% CrI [-0.27, 0.08]; pd = 86.35%. However, the three way

interaction between training condition, band order, and target band was significant, 𝛽 = 0.42, 95%

CrI [0.17, 0.7]; pd = 99.96% - indicating a greater slope for the varied condition trained with reverse

order bands. This interaction is shown in Figure 24, where the steepness of the best fitting line for

the varied-reversed condition is noticably steeper than the other conditions.
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Experiment 3 Summary

In Experiment 3, we investigated the effects of training condition (constant vs. varied) and band

type (training vs. extrapolation) on participants’ accuracy and discrimination during the testing
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phase. Unlike the previous experiments, participants received ordinal feedback during the training

phase. Additionally, Experiment 3 included both the original order condition from Experiment

1 and the reverse order condition from Experiment 2. The results revealed no significant main

effects of training condition on testing accuracy, nor was there a significant difference between

groups in band discrimination. However, we observed a significant three-way interaction for the

discrimination analysis, indicating that the varied condition showed a steeper slope coefficient on

the reverse order bands compared to the constant condition. This result suggests that varied

training enhanced participants’ ability to discriminate between velocity bands, but only when the

band order was reversed during testing.

Computational Model

exp(c(100 − Stim)2)

exp(c(350 − Stim)2)

exp(c(600 − Stim)2)

exp(c(800 − Stim)2)

exp(c(1000 − Stim)2)

exp(c(1200 − Stim)2)

Stim

100

350

600

800

1000

1200

Response

Figure 26: The Associative Learning Model (ALM). The diagram illustrates the basic structure
of the ALM model as used in the present work. Input nodes are activated as a function of their
similarity to the lower-boundary of the target band. The generalization parameter, 𝑐, determines
the degree to which nearby input nodes are activated. The output nodes are activated as a function
of the weighted sum of the input nodes - weights are updated via the delta rule.

The modeling goal is to implement a full process model capable of both 1) producing novel re-

sponses and 2) modeling behavior in both the learning and testing stages of the experiment. For

this purpose, we will apply the associative learning model (ALM) and the EXAM model of function

learning (DeLosh et al., 1997). ALM is a simple connectionist learning model which closely resem-
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bles Kruschke’s ALCOVE model (Kruschke, 1992), with modifications to allow for the generation

of continuous responses.

ALM & Exam

ALM is a localist neural network model (Page, 2000), with each input node corresponding to a

particular stimulus, and each output node corresponding to a particular response value. The units

in the input layer activate as a function of their Gaussian similarity to the input stimulus ( a_i(X)

= exp(-c(X - X_i)^2) ). So, for example, an input stimulus of value 55 would induce maximal

activation of the input unit tuned to 55. Depending on the value of the generalization parameter,

the nearby units (e.g., 54 and 56; 53 and 57) may also activate to some degree. The units in the

input layer activate as a function of their similarity to a presented stimulus. The input layer is

fully connected to the output layer, and the activation for any particular output node is simply

the weighted sum of the connection weights between that node and the input activations. The

network then produces a response by taking the weighted average of the output units (recall that

each output unit has a value corresponding to a particular response). During training, the network

receives feedback which activates each output unit as a function of its distance from the ideal level

of activation necessary to produce the correct response. The connection weights between input and

output units are then updated via the standard delta learning rule, where the magnitude of weight

changes are controlled by a learning rate parameter.

The EXAM model is an extension of ALM, with the same learning rule and representational scheme

for input and output units. EXAM differs from ALM only in its response rule, as it includes a

linear extrapolation mechanism for generating novel responses. When a novel test stimulus, 𝑋 , is

presented, EXAM first identifies the two nearest training stimuli, 𝑋1 and 𝑋2, that bracket 𝑋 . This

is done based on the Gaussian activation of input nodes, similar to ALM, but focuses on identifying

the closest known points for extrapolation.

Slope Calculation: EXAM calculates a local slope, 𝑆, using the responses associated with 𝑋1 and

𝑋2. This is computed as:

𝑆 = 𝑚(𝑋1) − 𝑚(𝑋2)
𝑋1 − 𝑋2

where 𝑚(𝑋1) and 𝑚(𝑋2) are the output values from ALM corresponding to the 𝑋1 and 𝑋2 inputs.
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Response Generation: The response for the novel stimulus 𝑋 is then extrapolated using the

slope 𝑆:

𝐸[𝑌 |𝑋] = 𝑚(𝑋1) + 𝑆 ⋅ |𝑋 − 𝑋1|

Here, 𝑚(𝑋1) is the ALM response value from the training data for the stimulus closest to 𝑋 , and

(𝑋 − 𝑋1) represents the distance between the novel stimulus and the nearest training stimulus.

Although this extrapolation rule departs from a strictly similarity-based generalization mechanism,

EXAM is distinct from pure rule-based models in that it remains constrained by the weights

learned during training. EXAM retrieves the two nearest training inputs, and the ALM responses

associated with those inputs, and computes the slope between these two points. The slope is then

used to extrapolate the response to the novel test stimulus. Because EXAM requires at least two

input-output pairs to generate a response, additional assumptions were required in order for it to

generate resposnes for the constant group. We assumed that participants come to the task with

prior knowledge of the origin point (0,0), which can serve as a reference point necessary for the

model to generate responses for the constant group. This assumption is motivated by previous

function learning research (Brown & Lacroix, 2017), which through a series of manipulations of the

y intercept of the underlying function, found that participants consistently demonstrated knowledge

of, or a bias towards, the origin point (see Kwantes & Neal (2006) for additional evidence of such

a bias in function learning tasks).

See Table 15 for a full specification of the equations that define ALM and EXAM, and Figure 26

for a visual representation of the ALM model.

Model Fitting

To fit ALM and EXAM to our participant data, we employ a similar method to Mcdaniel et al.

(2009), wherein we examine the performance of each model after being fit to various subsets of the

data. Each model was fit to the data with three separate procedures: 1) fit to maximize predictions

of the testing data, 2) fit to maximize predictions of both the training and testing data, 3) fit to

maximize predictions of the just the training data. We refer to this fitting manipulations as “Fit

Method” in the tables and figures below. It should be emphasized that for all three fit methods,

the ALM and EXAM models behave identically - with weights updating only during the training
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Table 15: ALM & EXAM Equations

ALM Response Generation

Input Activation 𝑎𝑖(𝑋) = 𝑒−𝑐(𝑋−𝑋𝑖)2

∑𝑀
𝑘=1 𝑒−𝑐(𝑋−𝑋𝑘)2

Input nodes activate as a
function of Gaussian similarity
to stimulus

Output Activation 𝑂𝑗(𝑋) = ∑𝑀
𝑘=1 𝑤𝑗𝑖 ⋅ 𝑎𝑖(𝑋) Output unit 𝑂𝑗 activation is the

weighted sum of input
activations and association
weights

Output Probability 𝑃[𝑌𝑗 |𝑋 ] = 𝑂𝑗(𝑋)
∑𝑀

𝑘=1 𝑂𝑘(𝑋) The response, 𝑌𝑗 probabilites
computed via Luce’s choice rule

Mean Output 𝑚(𝑋) = ∑𝐿
𝑗=1 𝑌𝑗 ⋅ 𝑂𝑗(𝑥)

∑𝑀
𝑘=1 𝑂𝑘(𝑋) Weighted average of

probabilities determines
response to X

ALM Learning
Feedback 𝑓𝑗(𝑍) = 𝑒−𝑐(𝑍−𝑌𝑗)2 feedback signal Z computed as

similarity between ideal
response and observed response

magnitude of error Δ𝑗𝑖 = (𝑓𝑗(𝑍) − 𝑜𝑗(𝑋))𝑎𝑖(𝑋) Delta rule to update weights.
Update Weights 𝑤𝑛𝑒𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂Δ𝑗𝑖 Updates scaled by learning rate

parameter 𝜂.
EXAM Extrapolation

Instance Retrieval 𝑃[𝑋𝑖|𝑋 ] = 𝑎𝑖(𝑋)
∑𝑀

𝑘=1 𝑎𝑘(𝑋) Novel test stimulus 𝑋 activates
input nodes 𝑋𝑖

Slope Computation 𝑆 = 𝑚(𝑋1)−𝑚(𝑋2)
𝑋1−𝑋2

Slope value, 𝑆 computed from
nearest training instances

Response 𝐸[𝑌 |𝑋𝑖] = 𝑚(𝑋𝑖) + 𝑆 ⋅ [𝑋 − 𝑋𝑖] Final EXAM response is the
ALM response for the nearest
training stimulus, 𝑚(𝑋𝑖),
adjusted by local slope 𝑆.
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phase. Models were fit separately to the data of each individual participant. The free parameters

for both models are the generalization (𝑐) and learning rate (𝑙𝑟) parameters. Parameter estimation

was performed using approximate bayesian computation (ABC), which we describe in detail below.

Approximate Bayesian Computation

To estimate the parameters of ALM and EXAM, we used approximate Bayesian computation

(ABC), enabling us to obtain an estimate of the posterior distribution of the generalization

and learning rate parameters for each individual. ABC belongs to the class of simulation-

based inference methods (Cranmer et al., 2020), which have begun being used for parameter

estimation in cognitive modeling relatively recently (Kangasrääsiö et al., 2019; Turner et al.,

2016; Turner & Van Zandt, 2012). Although they can be applied to any model from which

data can be simulated, ABC methods are most useful for complex models that lack an explicit

likelihood function (e.g., many neural network models).

The general ABC procedure is to 1) define a prior distribution over model parameters. 2)

sample candidate parameter values, 𝜃∗, from the prior. 3) Use 𝜃∗ to generate a simulated

dataset, 𝐷𝑎𝑡𝑎𝑠𝑖𝑚. 4) Compute a measure of discrepancy between the simulated and observed

datasets, 𝑑𝑖𝑠𝑐𝑟𝑒𝑝(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠). 5) Accept 𝜃∗ if the discrepancy is less than the tolerance

threshold, 𝜖, otherwise reject 𝜃∗. 6) Repeat until desired number of posterior samples are

obtained.

Although simple in the abstract, implementations of ABC require researchers to make a num-

ber of non-trivial decisions as to i) the discrepancy function between observed and simulated

data, ii) whether to compute the discrepancy between trial level data, or a summary statistic

of the datasets, iii) the value of the minimum tolerance 𝜖 between simulated and observed

data. For the present work, we follow the guidelines from previously published ABC tutorials

(Farrell & Lewandowsky, 2018; Turner & Van Zandt, 2012). For the test stage, we summa-

rized datasets with mean velocity of each band in the observed dataset as 𝑉 (𝑘)
𝑜𝑏𝑠 and in the

simulated dataset as 𝑉 (𝑘)
𝑠𝑖𝑚 , where 𝑘 represents each of the six velocity bands. For comput-

ing the discrepancy between datasets in the training stage, we aggregated training trials into

three equally sized blocks (separately for each velocity band in the case of the varied group).

After obtaining the summary statistics of the simulated and observed datasets, the discrep-

ancy was computed as the mean of the absolute difference between simulated and observed

datasets (Equation 1 and Equation 2). For the models fit to both training and testing data,
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discrepancies were computed for both stages, and then averaged together.

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑒𝑠𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚 , 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
6

6
∑
𝑘=1

|𝑉 (𝑘)
𝑜𝑏𝑠 − 𝑉 (𝑘)

𝑠𝑖𝑚 | (1)

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

|𝑉 (𝑗)
𝑜𝑏𝑠,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑉 (𝑗)

𝑠𝑖𝑚,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 |

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑇 𝑟𝑎𝑖𝑛,𝑣𝑎𝑟 𝑖𝑒𝑑(𝐷𝑎𝑡𝑎𝑠𝑖𝑚, 𝐷𝑎𝑡𝑎𝑜𝑏𝑠) = 1
𝑁𝑏𝑙𝑜𝑐𝑘𝑠 × 3

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑
𝑗=1

3
∑
𝑘=1

|𝑉 (𝑗,𝑘)
𝑜𝑏𝑠,𝑣𝑎𝑟 𝑖𝑒𝑑 − 𝑉 (𝑗,𝑘)

𝑠𝑖𝑚,𝑣𝑎𝑟 𝑖𝑒𝑑 |

(2)

The final component of our ABC implementation is the determination of an appropriate value

of 𝜖. The setting of 𝜖 exerts strong influence on the approximated posterior distribution.

Smaller values of 𝜖 increase the rejection rate, and improve the fidelity of the approximated

posterior, while larger values result in an ABC sampler that simply reproduces the prior

distribution. Because the individual participants in our dataset differed substantially in terms

of the noisiness of their data, we employed an adaptive tolerance setting strategy to tailor

𝜖 to each individual. The initial value of 𝜖 was set to the overall standard deviation of

each individuals velocity values. Thus, sampled parameter values that generated simulated

data within a standard deviation of the observed data were accepted, while worse performing

parameters were rejected. After every 300 samples the tolerance was allowed to increase only

if the current acceptance rate of the algorithm was less than 1%. In such cases, the tolerance

was shifted towards the average discrepancy of the 5 best samples obtained thus far. To ensure

the acceptance rate did not become overly permissive, 𝜖 was also allowed to decrease every

time a sample was accepted into the posterior.

For each of the 156 participants from Experiment 1, the ABC algorithm was run until 200 samples

of parameters were accepted into the posterior distribution. Obtaining this number of posterior

samples required an average of 205,000 simulation runs per participant. Fitting each combination

of participant, Model (EXAM & ALM), and fitting method (Test only, Train only, Test & Train)

required a total of 192 million simulation runs. To facilitate these intensive computational demands,

we used the Future Package in R (Bengtsson, 2021), allowing us to parallelize computations across

a cluster of ten M1 iMacs, each with 8 cores.
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Modelling Results

Table 16: Models errors predicting empirical data from Experiment 1 - aggregated over the full
posterior distribution for each participant. Note that Fit Method refers to the subset of the data
that the model was trained on, while Task Stage refers to the subset of the data that the model
was evaluated on.

ALM EXAM

Task Stage Fit Method Constant Varied Constant Varied

Test Fit to Test Data 199.93 103.36 104.01 85.68
Test Fit to Test & Training Data 216.97 170.28 127.94 144.86
Test Fit to Training Data 467.73 291.38 273.30 297.91
Train Fit to Test Data 297.82 2, 016.01 53.90 184.00
Train Fit to Test & Training Data 57.40 132.32 42.92 127.90
Train Fit to Training Data 51.77 103.48 51.43 107.03

ALM EXAM

Test Test_Train Train Test Test_Train Train
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Fit_Method

lo
g(

c) Constant
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c parameter
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learning rate parameter

Figure 27: Posterior Distributions of 𝑐 and 𝑙𝑟 parameters. Points represent median values, thicker
intervals represent 66% credible intervals and thin intervals represent 95% credible intervals around
the median. Note that the y-axes of the plots for the c parameter are scaled logarithmically.
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The posterior distributions of the 𝑐 and 𝑙𝑟 parameters are shown Figure 27, and model predictions

are shown alongside the empirical data in Figure 29. There were substantial individual differences in

the posteriors of both parameters, with the within-group individual differences generally swamped

any between-group or between-model differences. The magnitude of these individual differences

remains even if we consider only the single best parameter set for each subject.

We used the posterior distribution of 𝑐 and 𝑙𝑟 parameters to generate a posterior predictive distribu-

tion of the observed data for each participant, which then allows us to compare the empirical data

to the full range of predictions from each model. Aggregated residuals are displayed in Figure 28.

The pattern of training stage residual errors are unsurprising across the combinations of models

and fitting method . Differences in training performance between ALM and EXAM are generally

minor (the two models have identical learning mechanisms). The differences in the magnitude of

residuals across the three fitting methods are also straightforward, with massive errors for the ‘fit

to Test Only’ model, and the smallest errors for the ‘fit to train only’ models. It is also noteworthy

that the residual errors are generally larger for the first block of training, which is likely due to

the initial values of the ALM weights being unconstrained by whatever initial biases participants

tend to bring to the task. Future work may explore the ability of the models to capture more fine

grained aspects of the learning trajectories. However for the present purposes, our primary interest

is in the ability of ALM and EXAM to account for the testing patterns while being constrained,

or not constrained, by the training data. All subsequent analyses and discussion will thus focus on

the testing stage.

The residuals of the model predictions for the testing stage (Figure 28) also show an unsurprising

pattern across fitting methods - with models fit only to the test data showing the best performance,

followed by models fit to both training and test data, and with models fit only to the training data

showing the worst performance (note that y axes are scaled different between plots). Although

EXAM tends to perform better for both Constant and Varied participants (see also Figure 30),

the relative advantage of EXAM is generally larger for the Constant group - a pattern consistent

across all three fitting methods. The primary predictive difference between ALM and EXAM is

made clear in Figure 29, which directly compares the observed data against the posterior predictive

distributions for both models. Regardless of how the models are fit, only EXAM can capture the

pattern where participants are able to discriminate all 6 target bands.
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Figure 29: Empirical data and Model predictions for mean velocity across target bands. Fitting
methods (Test Only, Test & Train, Train Only) - are separated across rows, and Training Condition
(Constant vs. Varied) are separated by columns. Each facet contains the predictions of ALM and
EXAM, alongside the observed data.
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Figure 30: A-C) Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Var-
ied). Lower values on the y axis indicate better model fit. D) Specific contrasts of model perfor-
mance comparing 1) EXAM fits between constant and varied training; 2) ALM vs. EXAM for the
varied group; 3) ALM fits between constant and varied. Negative error differences indicate that
the term on the left side (e.g., EXAM Constant) tended to have smaller model residuals.

To quantitatively assess whether the differences in performance between models, we fit a Bayesian

regression predicting the errors of the posterior predictions of each models as a function of the

Model (ALM vs. EXAM) and training condition (Constant vs. Varied).

Model errors were significantly lower for EXAM (𝛽 = -37.54, 95% CrI [-60.4, -14.17], pd = 99.85%)

than ALM. There was also a significant interaction between Model and Condition (𝛽 = 60.42, 95%

CrI [36.17, 83.85], pd = 100%), indicating that the advantage of EXAM over ALM was significantly

greater for the constant group. To assess whether EXAM predicts constant performance signifi-

cantly better for Constant than for Varied subjects, we calculated the difference in model error
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between the Constant and Varied conditions specifically for EXAM. The results indicated that the

model error for EXAM was significantly lower in the Constant condition compared to the Varied

condition, with a mean difference of -22.88 (95% CrI [-46.02, -0.97], pd = 0.98).

Table 17: Models errors predicting empirical data - aggregated over all participants, posterior
parameter values, and velocity bands. Note that Fit Method refers to the subset of the data that
the model was trained on, while Task Stage refers to the subset of the data that the model was
evaluated on.

E2 E3

ALM EXAM ALM EXAM

Task Stage Constant Varied Constant Varied Constant Varied Constant Varied

Fit to Test Data

Test 239.7 129.8 99.7 88.2 170.1 106.1 92.3 72.8
Train 53.1 527.1 108.1 169.3 70.9 543.5 157.8 212.7

Fit to Test & Training Data

Test 266.0 208.2 125.1 126.4 197.7 189.5 130.0 128.5
Train 40.0 35.4 30.4 23.6 49.1 85.6 49.2 78.4

Fit to Training Data

Test 357.4 295.9 305.1 234.5 415.0 298.8 295.5 243.7
Train 42.5 23.0 43.2 22.6 51.4 63.8 51.8 65.3
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Table 18: Results of Bayesian Regression models predicting model error as a function of Model
(ALM vs. EXAM), Condition (Constant vs. Varied), and the interaction between Model and Con-
dition. The values represent the estimate coefficient for each term, with 95% credible intervals in
brackets. The intercept reflects the baseline of ALM and Constant. The other estimates indicate
deviations from the baseline for the EXAM mode and varied condition. Lower values indicate
better model fit.

Credible Interval

Experiment Term Estimate 95% CrI Lower 95% CrI Upper pd

Experiment 1

Exp 1 Intercept 176.3 156.9 194.6 1.00
Exp 1 ModelEXAM −88.4 −104.5 −71.8 1.00
Exp 1 conditVaried −37.5 −60.4 −14.2 1.00
Exp 1 ModelEXAM:conditVaried 60.4 36.2 83.8 1.00

Experiment 2

Exp 2 Intercept 245.9 226.2 264.5 1.00
Exp 2 ModelEXAM −137.7 −160.2 −115.5 1.00
Exp 2 conditVaried −86.4 −113.5 −59.3 1.00
Exp 2 ModelEXAM:conditVaried 56.9 25.3 88.0 1.00

Experiment 3

Exp 3 Intercept 164.8 140.1 189.4 1.00
Exp 3 ModelEXAM −65.7 −86.0 −46.0 1.00
Exp 3 conditVaried −40.6 −75.9 −3.0 0.98
Exp 3 bandOrderReverse 25.5 −9.3 58.7 0.93
Exp 3 ModelEXAM:conditVaried 41.9 11.2 72.5 0.99
Exp 3 ModelEXAM:bandOrderReverse −7.3 −34.5 21.1 0.70
Exp 3 conditVaried:bandOrderReverse 30.8 −19.6 83.6 0.88
Exp 3 ModelEXAM:conditVaried:bandOrderReverse −60.6 −101.8 −18.7 1.00

Model Fits to Experiment 2 and 3. Data from Experiments 2 and 3 were fit to ALM and EXAM

in the same manner as Experiment1 . For brevity, we only plot and discuss the results of the

“fit to training and testing data” models - results from the other fitting methods can be found in

the appendix. The model fitting results for Experiments 2 and 3 closely mirrored those observed

in Experiment 1. The Bayesian regression models predicting model error as a function of Model

(ALM vs. EXAM), Condition (Constant vs. Varied), and their interaction (see Table 18) revealed

a consistent main effect of Model across all three experiments. The negative coefficients for the

ModelEXAM term (Exp 2: 𝛽 = -86.39, 95% CrI -113.52, -59.31, pd = 100%; Exp 3: 𝛽 = -40.61,

95% CrI -75.9, -3.02, pd = 98.17%) indicate that EXAM outperformed ALM in both experiments.
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Furthermore, the interaction between Model and Condition was significant in both Experiment

2 (𝛽 = 56.87, 95% CrI 25.26, 88.04, pd = 99.98%) and Experiment 3 (𝛽 = 41.9, 95% CrI 11.2,

72.54, pd = 99.35%), suggesting that the superiority of EXAM over ALM was more pronounced

for the Constant group compared to the Varied group, as was the case in Experiment 1. Recall

that Experiment 3 included participants in both the original and reverse order conditions - and

that this manipulation interacted with the effect of training condition. We thus also controlled for

band order in our Bayesian Regression assessing the relative performance of EXAM and ALM in

Experiment 3. There was a significant three way interaction between Model, Training Condition,

and Band Order (𝛽 = -60.6, 95% CrI -101.8, -18.66, pd = 99.83%), indicating that the relative

advantage of EXAM over ALM was only more pronounced in the original order condition, and not

the reverse order condition (see Figure 32).
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Figure 32: Conditional effects of Model (ALM vs EXAM) and Condition (Constant vs. Varied) on
Model Error for Experiment 2 and 3 data. Experiment 3 also includes a control for the order of
training vs. testing bands (original order vs. reverse order).

Computational Model Summary. Across all three experiments, the model fits consistently favored

the Extrapolation-Association Model (EXAM) over the Associative Learning Model (ALM). This
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preference for EXAM was particularly pronounced for participants in the constant training con-

ditions (note the positive coefficients on ModelEXAM:conditVaried interaction terms Table 18).

This pattern is clearly illustrated in Figure 33, which plots the difference in model errors between

ALM and EXAM for each individual participant. Both varied and constant conditions have a

greater proportion of subjects better fit by EXAM (positive error differences), with the magnitude

of EXAM’s advantage visibly larger for the constant group.

The superior performance of EXAM, especially for the constant training groups, may initially

seem counterintuitive. One might assume that exposure to multiple, varied examples would be

necessary to extract an abstract rule. However, EXAM is not a conventional rule-based model; it

does not require the explicit abstraction of a rule. Instead, rule-based responses emerge during the

retrieval process. The constant groups’ formation of a single, accurate input-output association,

combined with the usefulness of the zero point, may have been sufficient for EXAM to capture

their performance. A potential concern is that the assumption of participants utilizing the zero

point essentially transforms the extrapolation problem into an interpolation problem. However,

this concern is mitigated by the consistency of the results across both the original and reversed

order conditions (the testing extrapolation bands fall in between the constant training band and

the 0 point in experiment 1, but not in experiment 2).

The fits to the individual participants also reveal a number of interesting cases where the models

struggle to capture the data (Figure 34). For example participant 68 exhibits a strong a strong

non-monotonicity in the highest velocity band, a pattern which ALM can mimic, but which EXAM

cannot capture, given it’s to enforce a simple linear relationship between target velocity and re-

sponse. Participant 70 (lower right corner of Figure 34) had a roughly parabolic response pattern

in their observed data, a pattern which neither model can properly reproduce, but which causes

EXAM to perform particularly poorly.

Modeling Limitations. The present work compared models based on their ability to predict the

observed data, without employing conventional model fit indices such as the Akaike Information

Criterion (AIC) or the Bayesian Information Criterion (BIC). These indices, which penalize models

based on their number of free parameters, would have been of limited utility in this case, as

both ALM and EXAM have two free parameters. However, despite having the same number

of free parameters, EXAM could still be considered the more complex model, as it incorporates

all the components of ALM plus an additional mechanism for rule-based responding. A more
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comprehensive model comparison approach might involve performing cross-validation with a held-

out subset of the data (Mezzadri et al., 2022) or penalizing models based on the range of patterns

they can produce (Dome & Wills, 2023).
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Project 2 Discussion

Across three experiments, we investigated the impact of training variability on learning and ex-

trapolation in a visuomotor function learning task.

In Experiment 1, participants in the varied training condition, who experienced a wider range of

velocity bands during training, showed lower accuracy at the end of training compared to those

in the constant training condition. Crucially, during the testing phase, the varied group exhibited

significantly larger deviations from the target velocity bands, particularly for the extrapolation

bands that were not encountered during training. The varied group also showed less discrimination

between velocity bands, as evidenced by shallower slopes when predicting response velocity from

target velocity band.
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Experiment 2 extended these findings by reversing the order of the training and testing bands.

Similar to Experiment 1, the varied group demonstrated poorer performance during both training

and testing phases. However, unlike Experiment 1, the varied group did not show a significant

difference in discrimination between bands compared to the constant group.

In Experiment 3, we provided only ordinal feedback during training, in contrast to the continuous

feedback provided in the previous experiments. Participants were assigned to both an order condi-

tion (original or reverse) and a training condition (constant or varied). The varied condition showed

larger deviations at the end of training, consistent with the previous experiments. Interestingly,

there was a significant interaction between training condition and band order, with the varied con-

dition showing greater accuracy in the reverse order condition. During testing, the varied group

once again exhibited larger deviations, particularly for the extrapolation bands. The reverse order

conditions showed smaller deviations compared to the original order conditions. Discrimination

between velocity bands was poorer for the varied group in the original order condition, but not in

the reverse order condition.

All three of our experiments yielded evidence that varied training conditions produced less learning

by the end of training, a pattern consistent with much of the previous research on the influence of

training variability (Catalano & Kleiner, 1984; Soderstrom & Bjork, 2015; Wrisberg et al., 1987).

The sole exception to this pattern was the reverse order condition in Experiment 3, where the varied

group was not significantly worse than the constant group. Neither the varied condition trained

with the same reverse-order items in Experiment 2, nor the original-order varied condition trained

with ordinal feedback in Experiment 3 were able to match the performance of their complementary

constant groups by the end of training, suggesting that the relative success of the ordinal-reverse

ordered varied group cannot be attributed to item or feedback effects alone.

Our findings also diverge from the two previous studies to cleanly manipulate the variability of

training items in a function learning task (DeLosh et al., 1997; van Dam & Ernst, 2015), although

the varied training condition of van Dam & Ernst (2015) also exhibited less learning, neither of these

previous studies observed any difference between training conditions in extrapolation to novel items.

Like DeLosh et al. (1997) , our participants exhibited above chance extrapolation/discrimination

of novel items, however they observed no difference between any of their three training conditions.

A noteworthy difference difference between our studies is that DeLosh et al. (1997) trained par-

ticipants with either 8, 20, or 50 unique items (all receiving the same total number of training
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trials). These larger sets of unique items, combined with the fact that participants achieved near

ceiling level performance by the end of training - may have made it more difficult to observe any

between-group differences of training variation in their study. van Dam & Ernst (2015) ’s vari-

ability manipulation was more similar to our own, as they trained participants with either 2 or 5

unique items. However, although the mapping between their input stimuli and motor responses was

technically linear, the input dimension was more complex than our own, as it was defined by the

degree of “spikiness” of the input shape. This entirely arbitrary mapping also would have preculded

any sense of a “0” point, which may partially explain why neither of their training conditions were

able to extrapolate linearly in the manner observed in the current study or in DeLosh et al. (1997).

Limitations

While the present study provides valuable insights into the influence of training variability on vi-

suomotor function learning and extrapolation, there are several limitations that should be flagged.

First, although the constant training group never had experience from a velocity band closer to

the extrapolation bands than the varied group, they always had a three times more trials with the

nearest velocity band. Such a difference may be an unavoidable consequence of varied vs. constant

design which match the total number of training trials between the two groups. However in order

to more carefully tease apart the influence of variability from the influence of frequency/repetition

effects, future research could explore alternative designs that maintain the variability manipula-

tion while equating the amount of training on the nearest examples across conditions, such as by

increasing the total number of trials for the varied group. Another limitation is that the testing

stage did not include any interpolation items, i.e. the participants tested only from the training

bands they experienced during training, or from extrapolation bands. The absence of interpo-

lation testing makes it more difficult to distinguish between the effects of training variability on

extrapolation specifically, as opposed to generalization more broadly. Of course, the nature of the

constant training condition makes interpolation testing impossible to implement, however future

studies might compare a training regimes that each include at least 2 distinct items, but still differ

in total amount of variability experienced, which would then allow groups to be compared in terms

of both interpolation and extrapolation testing. Finally, the task employed in the present study

consisted of only a linear, positive function. Previous work in human function learning has repeat-

edly shown that such functions are among the easiest to learn, but that humans are nonetheless

capable of learning negative, non-linear, or discontinuous functions (Busemeyer et al., 1997; DeLosh
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et al., 1997; Kalish, 2013; Mcdaniel et al., 2009). It thus remains an open question as to whether

the influence of training variability might interact with various components of the to-be-learned

function.

General Discussion

To facilitate ease of comparison between the two projects and their respective tasks, we’ll now refer

to project 1 as Hit The Target (HTT) and project 2 as Hit The Wall (HTW).

Empirical and Modeling Summary

Across both projects, we investigated the influence of training variability on learning and general-

ization in computerized visuomotor skill learning, and function learning tasks. In project 1 (HTT),

experiments 1 and 2 demonstrated that varied training led to superior testing performance com-

pared to constant training. In Experiment 1, the varied group even outperformed the constant

group even when testing from the constant groups trained position. In contrast, Project 2 (HTW)

found the opposite pattern - the varied training groups exhibited poorer performance than the con-

stant groups, both in terms of training accuracy, accuracy in extrapolation testing, and, in a subset

of the experiments, the varied group showed a diminished ability to discriminate between bands.

This detrimental effect of variability was observed across three experiments, with the exception of

the reverse order condition in Experiment 3, where the varied group was able to match the constant

group’s performance.

Both projects also included computational modeling componenents. In Project 1, the IGAS model

was introduced as a means of addressing the lack of control for similarity between training and

testing conditions common to previous work in the “benefits of variability” literature. The IGAS

model provides a theoretically motivated method of quantifying the similarity between training

experience and testing conditions. The resulting similarity metric (i.e. our 1c-similarity) is shown

to be a significant predictor of testing performance on its own, and when added as a covariate to

the statistical model used to compare the constant and varied training groups. We then showed

the group-level effect of training variability on testing performance can be accounted for with

the additional assumption that training variability influences the generalization gradient. The

contribution of the IGAS model was thus twofold: 1) providing a theoretically justifiable method
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of quantifying/controlling for similarity between training and testing, and 2) demonstrating the

viability of a flexible-similarity based generalization account for the empirically observed benefit

of variability in our task. Although similar approaches have been employed in other domains,

both contributions are novel additions to the large body of research assessing the effect of constant

vs. varied training manipulations in visuomotor skill tasks.

Although theoretically motivated, the IGAS model of Project 1 is best categorized as a descriptive

measurement-model. Sufficient to account for group differences, but lacking the machinery neces-

sary to provide a full process-level account of how the empirical quantities of interest are generated.

In contrast, Project 2 (HTW) implemented a more robust computational modeling approach, im-

plementing and comparing full process models (ALM & EXAM), capable of generating predictions

for both the learning and testing stages of the experiment. ALM and EXAM have been used as

models of function learning, cue judgement, and forecasting behavior in numerous studies over the

past 25 years (Brown & Lacroix, 2017; DeLosh et al., 1997; Kane & Broomell, 2020; H. Kelley &

Busemeyer, 2008; Kwantes et al., 2012; Mcdaniel et al., 2009; Von Helversen & Rieskamp, 2010).

The present work presents the first application of these models to to the study of training vari-

ability in a visuomotor function learning task. We fit both models to individual participant data,

using a form of simulation-based Bayesian parameter estimation that allowed us to generate and

compare the full posterior predictive distributions of each model. EXAM provided the best overall

account of the testing data, and the advantage of EXAM over ALM was significantly greater for

the constant group. Notably, EXAM captured the constant groups’ ability to extrapolate linearly

to novel velocity bands, despite receiving training from only a single input-output pair. This find-

ing suggests that EXAM’s linear extrapolation mechanism, combined with the assumption of prior

knowledge about the origin point (0, 0), was sufficient to account for the constant groups’ accurate

extrapolation performance. Such findings may offer a preliminary suggestion that experience with

a more variable set of training examples may be detrimental to performance in simple extrapolation

tasks.

Differences between the two Projects

The HTT and HTW tasks differ across numerous dimensions that may be relevant to the opposing

patterns observed in the two projects (see Table 19 provides for a detailed comparison of the two

tasks).
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In HTT, the salient perceptual elements of the task (i.e. the launching box, target and barrier)

are subject to variation (i.e. different distances between the launching box and target), and the

spatial layout of these perceptually variable elements are intrinsically linked to the task objective

of striking the target. Conversely, the perceptual task elements in HTW are invariant across trials,

and the task objective is specified by the target velocity value specified as a numeral at the top of

the screen. If the benefits of training variation do arise from the formation and flexible retrieval

of distinct memory traces, then the lack of perceptual salience between training instances in the

HTW task may have limited any potential benefits of variability. Future work could investigate

this possibility further employing a modified version of the HTW task wherein the correct velocity

value is indicated by some perceptual feature of the task (e.g., the color of the wall, or size of the

ball), rather than displaying the target velocity numerically.

The HTT and HTW tasks also differed in terms of general task complexity. The HTT task was

designed to mimic projectile launching tasks commonly employed in visuomotor learning studies,

and the parabolic trajectories necessary to strike the target in HTT were sensitive to both the x and

y dimensions of the projectiles velocity (and to a lesser extent, the position within the launching box

at which the ball was released). Conversely the HTW task was influenced to a greater extent by the

tasks commonly utilized in the function learning literature, wherein the correct output respones are

determined by a single input dimension. In HTW,the relationship between feedback and optimal

behavioral adjustment is also almost perfectly smooth, if participants produce a throw that is 100

units too hard, they’ll be told that they were 100 units away from the target band. Whereas in

HTT, the presence of the barrier in introduces irregularities in the task space. Even throws close

to the solution space might result in failure, creating a less predictable learning environment.

Table 19: Comparison of the tasks in Project 1 (HTT) and Project 2 (HTW).

Dimension HTT (Project 1) HTW (Project 2)

Task

Description

Projectile launching to hit a target Projectile launching to hit wall at

a specific velocity

Task

Complexity

More complex parabolic trajectory, both x

and y velocities relevant to outcome

Simpler 1D mapping of force to

outcome. Only x velocity is

relevant.
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Dimension HTT (Project 1) HTW (Project 2)

Task Space More complex: xy velocity combinations

closer to the solution space may still result

in worse feedback due to striking the

barrier.

Simpler: smooth, linear mapping

between velocity and feedback.

Perceptual

salience of

Varied

Conditions

Varied conditions (# of throwing distances)

are perceptually distinct, i.e. salient

differences in distance between launching

box and target.

Varied conditions (# of velocity

bands) are less salient - only

difference is the numeral displayed

on screen.

Testing

Feedback

Testing always included feedback Primary testing stage had no

feedback.

Potential for

Learning

during Testing

Limited potential for learning during

testing due to feedback.

Some potential for learning during

no-feedback testing by observing

ball trajectory.

Training

Experience

Varied group gets half as much experience

on any one position as the constant group.

Varied group gets 1/3 as much

experience on any one velocity

band as the constant group.

Testing

Structure

Random interleaving of trained/transfer

testing distances.

Blocked structure, separately

testing trained vs extrapolation

testing bands.

Conclusion

In summary, this dissertation provides a comprehensive examination of the effects of training vari-

ability on learning and generalization in visuomotor and function learning tasks. The contrasting

results obtained from the Hit The Target (HTT) and Hit The Wall (HTW) tasks underscore the

complexity inherent to the longstanding pedagogical and scientific goal of identifying training ma-

nipulations that consistently benefit learning and generalization. Moreover, through the develop-

ment and application of computational models, we provide novel theoretical accounts for both the

beneficial and detrimental effects of training variability observed in our experiments. These findings

highlight the importance of considering task characteristics when designing experiments intended
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to assess the influence of training interventions, and demonstrate the value of combining empir-

ical and computational modeling approaches to uncover the cognitive mechanisms that support

learning and generalization. Future research should continue to investigate the complex interplay

between task demands, training manipulations, and individual differences, with the ultimate goal

of optimizing educational and training outcomes across a wide range of domains.

Appendix

Apppendix available at tegorman13.github.io/Dissertation/Sections/Appendix.html
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